首页> 外文会议>International conference on cloud computing and security >A Robust Fingerprint Identification Method by Deep Learning with Gabor Filter Multidimensional Feature Expansion
【24h】

A Robust Fingerprint Identification Method by Deep Learning with Gabor Filter Multidimensional Feature Expansion

机译:Gabor滤波器多维特征扩展的深度学习鲁棒指纹识别方法

获取原文

摘要

Traditional fingerprint methods based on minutiae matching perform well for the acquisition of large area fingerprint. But the accuracy rate and the robustness of small area fingerprint decreases obviously when contains less minutia. Aiming at solving the above problem, a small area fingerprint matching method based on Convolution Neural Network (CNN) which selecting the center block of fingerprint as the region of interest (ROI) after preprocessing and using the Gabor filter to extract feature as multidimensional feature extension named ROIFE_CNN (ROI of fingerprint feature extension recognition of CNN) is proposed to enhance robustness. Experiments show that the accuracy of small area fingerprint classification based on CNN is enhanced.
机译:传统的基于细节匹配的指纹方法在大面积指纹采集中表现良好。但是,当包含较少的细节时,小区域指纹的准确率和鲁棒性会明显降低。为了解决上述问题,提出了一种基于卷积神经网络(CNN)的小面积指纹匹配方法,该方法在预处理后选择指纹的中心块作为感兴趣区域(ROI),并使用Gabor滤波器提取特征作为多维特征扩展。为了增强鲁棒性,提出了一种名为ROIFE_CNN(CNN指纹特征扩展识别的ROI)的方法。实验表明,基于CNN的小区域指纹分类的准确性得到了提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号