首页> 外文会议>International Conference on Algorithmic Applications in Management >Approximating Closest Vector Problem in l_∞ Norm Revisited
【24h】

Approximating Closest Vector Problem in l_∞ Norm Revisited

机译:再论l_∞范数中的近似最接近向量问题

获取原文

摘要

The security of most lattice-based cryptography schemes are based on two computational hard problems which are the Short Integer Solution (SIS) and Learning With Errors (LWE) problems. The computational complexity of SIS and LWE problems are related to approximating Shortest Vector Problem (SVP) and Bounded Distance Decoding Problem (BDD). Approximating BDD is a special case of approximating Closest Vector Problem (CVP). In this paper, we revisit the study for approximating Closest Vector Problem. We give one proof that approximating the Closest Vector Problem over l_∞ norm (CVP_∞) within any constant factor is NP-hard. The result is obtained by the gap-preserving reduction from Min Total Label Cover problem in l_1 norm to CVP_∞ This proof is simpler than known proofs.
机译:大多数基于格的加密方案的安全性都基于两个计算难题,即短整数解决方案(SIS)和有错误学习(LWE)问题。 SIS和LWE问题的计算复杂性与近似最短向量问题(SVP)和有界距离解码问题(BDD)有关。近似BDD是近似最近向量问题(CVP)的特殊情况。在本文中,我们将重新研究近似最近向量问题的研究。我们给出一个证明,在任何恒定因子内,在l_∞范数(CVP_∞)上逼近最近向量问题都是NP-hard。通过将保留间隙从l_1范数中的“最小总标签覆盖率”问题减少到CVP_∞,可以得到结果。该证明比已知证明更简单。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号