首页> 外文会议>International Conference on Advanced Computing and Applications >Scale-Down Methods for Optimizing Resource Allocation In Providing Virtual Laboratory Environment by Cloud Computing
【24h】

Scale-Down Methods for Optimizing Resource Allocation In Providing Virtual Laboratory Environment by Cloud Computing

机译:通过云计算提供虚拟实验室环境中优化资源分配的按比例缩小方法

获取原文

摘要

Nowadays, Cloud Computing plays a vital role in providing virtual infrastructure for computing demands and services such as Amazon EC2, Google Cloud, Azure. In addition, Cloud Computing has potential for supporting experimental environment as Virtual Laboratory in terms of education. Instead of the real laboratory, Virtual Laboratory can save deploying time and cost. With the model that we are implementing on our High Performance Computing system, lecturers are considered as users who request the virtual resources for experimental environment. Hence, the problem that we pose is how to optimize the mechanism of allocating resources efficiently for both the user side and the server side. This paper contributes two scale-down algorithms which serve Virtual Laboratory users and optimize the scheduler of resource allocation on server side for multiple courses. The results illustrate that our aforementioned algorithms not only save costs by scaling down virtual resources but also satisfy students experiment in using the Virtual Laboratory.
机译:如今,云计算在提供虚拟基础架构以满足计算需求和服务(例如Amazon EC2,Google Cloud,Azure)方面发挥着至关重要的作用。此外,就教育而言,云计算具有作为虚拟实验室支持实验环境的潜力。代替真正的实验室,虚拟实验室可以节省部署时间和成本。通过我们在高性能计算系统上实现的模型,讲师被视为要求为实验环境提供虚拟资源的用户。因此,我们提出的问题是如何优化为用户端和服务器端有效分配资源的机制。本文提供了两种缩减算法,这些算法可为虚拟实验室用户提供服务,并针对多个课程在服务器端优化资源分配的调度程序。结果表明,我们上述算法不仅可以通过缩减虚拟资源来节省成本,还可以满足学生使用虚拟实验室的实验需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号