首页> 外文会议>International Conference on Advanced Computing and Applications >An Adaptive Beacon-Based Scheme for Warning Messages Dissemination in Vehicular Ad-Hoc Networks
【24h】

An Adaptive Beacon-Based Scheme for Warning Messages Dissemination in Vehicular Ad-Hoc Networks

机译:基于自适应信标的车辆Ad-Hoc网络中的警告消息分发方案

获取原文

摘要

For improving the traffic safety in intelligent transportation systems, vehicles that are formed by Vehicular Ad-hoc Networks (VANETs) conventionally disseminate warning messages to their nearby vehicles as soon as a dangerous situation occurs. However, the major challenge in VANETs is to develop an efficient data dissemination protocol for tackling the broadcast storm and network partition problems. In this paper, we propose an Adaptive Beacon-based Data Dissemination (ABDDis) scheme to deal with these problems using only local one-hop neighbor information. The ABDDis scheme features a novel mechanism to adaptively adjust the beacon interval to reduce the channel load while maintaining the correct information about nearby vehicles. Additionally, a novel store-carry-forward (SCF) mechanism is proposed to overcome the network partition problem. The performance of the ABDDis scheme is evaluated in the Veins simulation framework that provides a bidirectional coupling between the network simulator OMNeT++ and the traffic simulator SUMO. The simulation result shows that the ABDDis scheme significantly mitigates the broadcast storm compared to other schemes and maintains a good coverage across various traffic densities. Moreover, the ABDDis scheme shows its robustness by being able to tolerate reasonable GPS drift.
机译:为了提高智能交通系统中的交通安全,通常,一旦发生危险情况,由车辆自组织网络(VANET)组成的车辆就会向附近的车辆发布警告消息。但是,VANET中的主要挑战是开发一种有效的数据分发协议,以解决广播风暴和网络分区问题。在本文中,我们提出了一种仅基于本地一跳邻居信息的自适应基于信标的数据分发(ABDDis)方案来解决这些问题。 ABDDis方案具有一种新颖的机制,可以在保持有关附近车辆的正确信息的同时,自适应地调整信标间隔以减少信道负载。此外,提出了一种新颖的存储转发(SCF)机制来克服网络分区问题。在静脉仿真框架中评估了ABDDis方案的性能,该框架在网络模拟器OMNeT ++和流量模拟器SUMO之间提供了双向耦合。仿真结果表明,与其他方案相比,ABDDis方案显着减轻了广播风暴,并在各种流量密度下保持了良好的覆盖范围。而且,ABDDis方案通过能够承受合理的GPS漂移而显示出其鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号