首页> 外文会议>Photonic Instrumentation Engineering VI >A frequency-modulated laser interferometer for nanometer-scale position sensing at cryogenic temperatures
【24h】

A frequency-modulated laser interferometer for nanometer-scale position sensing at cryogenic temperatures

机译:一种用于低温下纳米级位置感测的调频激光干涉仪

获取原文
获取原文并翻译 | 示例

摘要

The continually increasing sensitivity required for advancement of far-infrared astronomy dictates that the next generationof space-based observatories must employ cryogenically cooled telescopes and instruments. Cryogenic operation ofinterferometers such as those proposed for future space missions poses particular challenges, including the need for robustlow power dissipation cryogenic position metrology. Instrumentation must be cooled to <4 K to avoid a noise contributionfrom self-emission and often contain moving components whose position must be measured precisely at cryogenictemperatures.In 2018, we reported on the development of a three-phase fiber-fed laser homodyne interferometer for optical positionmetrology that achieved a displacement uncertainty of 2.3 nm RMS at 4 K. In that design, one arm of the interferometerhad an additional 2 m of optical fiber to carry the probe signal to the 4 K work space. Subsequently, a 2 m, armored,differential fiber pair was developed to balance the lengths of the probe and reference interferometric beams that weresubject to thermal gradients. Although this led to an improved dynamic performance in the measurement of an oscillatingtarget, low velocity performance was limited by 1/f noise in the photodetector circuit.Building on that work, we present the design and review the performance of a new frequency-modulated laserinterferometer system we have developed that improves upon the three-phase system by eliminating the need for adifferential fiber pair in cryogenic applications and achieves 29 nm RMS uncertainty for mechanical displacementvelocities from 0 to ~4 mm/s.
机译:推进远红外天文学所需的灵敏度不断提高,这意味着下一代天基天文台必须使用低温冷却的望远镜和仪器。诸如为将来的太空任务所建议的那样的干涉仪的低温操作带来了特殊的挑战,包括对鲁棒的低功耗低温位置测量的需求。仪器必须冷却至<4 K,以避免自发射引起的噪声\ r \ n,并且经常包含运动组件,其位置必须在低温\ r \ n温度下精确测量。\ r \ n2018年,我们报告了用于光学位置\ r \ n计量学的三相光纤馈电激光零差干涉仪,在4 K时实现了2.3 nm RMS的位移不确定性。在该设计中,干涉仪的一个臂\ r \ n还需要另外2 m的光纤将探测信号传送到4 K工作空间。随后,开发了2 m的铠装差分光纤对,以平衡受热梯度影响的探头和参考干涉光束的长度。尽管这可以改善振荡目标的动态性能,但低速性能受到光电探测器电路中1 / f噪声的限制。\ r \ n在此基础上,我们介绍了设计并回顾了性能我们开发了一种新型的调频激光器\ r \ n干涉仪系统,该系统通过消除低温应用中对\ r \ n差分光纤对的需求而改进了三相系统,并实现了29 nm RMS的机械位移RMS不确定性\ r \速度从0到〜4 mm / s。

著录项

  • 来源
    《Photonic Instrumentation Engineering VI》|2019年|1092514.1-1092514.12|共12页
  • 会议地点 0277-786X;1996-756X
  • 作者单位

    Department of Physics and Astronomy, University of Lethbridge, Alberta, Canada;

    Department of Physics and Astronomy, University of Lethbridge, Alberta, Canada;

    Department of Physics and Astronomy, University of Lethbridge, Alberta, Canada;

    Department of Physics and Astronomy, University of Lethbridge, Alberta, Canada;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号