首页> 外文会议>Information Retrieval Technology; Lecture Notes in Computer Science; 4182 >Learning Question Focus and Semantically Related Features from Web Search Results for Chinese Question Classification
【24h】

Learning Question Focus and Semantically Related Features from Web Search Results for Chinese Question Classification

机译:从网络搜索结果中学习问题重点和语义相关特征以进行中文问题分类

获取原文
获取原文并翻译 | 示例

摘要

Recently, some machine learning techniques like support vector machines are employed for question classification. However, these techniques heavily depend on the availability of large amounts of training data, and may suffer many difficulties while facing various new questions from the real users on the Web. To mitigate the problem of lacking sufficient training data, in this paper, we present a simple learning method that explores Web search results to collect more training data automatically by a few seed terms (question answers). In addition, we propose a novel semantically related feature model (SRFM), which takes advantage of question focuses and their semantically related features learned from the larger number of collected training data to support the determination of question type. Our experimental results show that the proposed new learning method can obtain better classification performance than the bigram language modeling (LM) approach for the questions with untrained question focuses.
机译:最近,诸如支持向量机之类的一些机器学习技术被用于问题分类。但是,这些技术在很大程度上取决于大量训练数据的可用性,并且在面对来自网络上实际用户的各种新问题时可能会遇到许多困难。为了缓解缺少足够的训练数据的问题,在本文中,我们提出了一种简单的学习方法,该方法探索Web搜索结果以通过几个种子词(问题答案)自动收集更多的训练数据。此外,我们提出了一种新颖的语义相关特征模型(SRFM),该模型利用了问题焦点及其从大量收集的训练数据中学习的语义相关特征来支持问题类型的确定。我们的实验结果表明,针对未受训练的问题焦点,所提出的新学习方法比二元语言建模(LM)方法可以获得更好的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号