首页> 外文会议>Information processing in computer-assisted interventions >Improved Neuronavigation through Integration of Intraoperative Anatomical and Diffusion Images in an Interventional MRI Suite
【24h】

Improved Neuronavigation through Integration of Intraoperative Anatomical and Diffusion Images in an Interventional MRI Suite

机译:通过在介入式MRI套件中整合术中解剖和扩散图像来改善神经导航

获取原文
获取原文并翻译 | 示例

摘要

Integration of information from complementary imaging modalities in medical image registration schemes potentially improves the registration accuracy. MRI is now being used for guidance of various neurosurgical procedures like anterior temporal lobe resection in patients with refractory temporal lobe epilepsy. Accurate localisation of critical white matter tracts, such as the optic radiation, during neurosurgery is critical in ensuring good patient outcome. Current commercial interventional MR scanners are capable of performing anatomical and diffusion weighted imaging. We propose a near real-time multivariate registration scheme that uses both anatomical and diffusion images from the pre and intraoperative imaging sessions. The registration framework is optimized for use on graphical processing units and we perform a full multivariate non-rigid registration in under three minutes making the proposed framework suitable for use under the stringent time constraints of neurosurgical procedures. We assess the accuracy of our algorithm using a numerical phantom and demonstrate accurate localisation of the optic radiation in clinical datasets. This work could be of significant utility in image guided interventions and facilitate effective surgical treatments.
机译:来自互补成像模态的信息在医学图像配准方案中的集成潜在地提高了配准精度。 MRI现在被用于指导各种神经外科手术,例如难治性颞叶癫痫患者的前颞叶切除术。在神经外科手术期间,关键的白质束(如视线辐射)的准确定位对于确保良好的患者预后至关重要。当前的商业介入式MR扫描仪能够执行解剖和扩散加权成像。我们提出了一种近实时多元配准方案,该方案使用了术前和术中成像会议的解剖图像和扩散图像。该注册框架经过优化,可在图形处理单元上使用,并且我们在三分钟内执行了完整的多元非刚性注册,从而使该提议的框架适合在神经外科手术的严格时间限制下使用。我们使用数字体模评估我们算法的准确性,并证明在临床数据集中光辐射的准确定位。这项工作在图像引导干预中可能具有重要作用,并有助于有效的外科治疗。

著录项

  • 来源
  • 会议地点 Berlin(DE);Berlin(DE)
  • 作者单位

    Centre for Medical Image Computing (CMIC), University College London, UK;

    Epilepsy Society MRI Unit and Department of Clinical and Experimental Epilepsy,UCL Institute of Neurology, London, UK;

    Centre for Medical Image Computing (CMIC), University College London, UK;

    Centre for Medical Image Computing (CMIC), University College London, UK;

    National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust,London, UK;

    National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust,London, UK;

    National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust,London, UK;

    National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust,London, UK;

    National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust,London, UK;

    National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust,London, UK;

    Centre for Medical Image Computing (CMIC), University College London, UK;

    Epilepsy Society MRI Unit and Department of Clinical and Experimental Epilepsy,UCL Institute of Neurology, London, UK;

    Centre for Medical Image Computing (CMIC), University College London, UK;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 信息处理(信息加工);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号