首页> 外文会议>IEEE/ACM International Conference on Mobile Software Engineering and Systems >Code Offloading Solutions for Audio Processing in Mobile Healthcare Applications: A Case Study
【24h】

Code Offloading Solutions for Audio Processing in Mobile Healthcare Applications: A Case Study

机译:移动医疗应用中音频处理的代码分载解决方案:一个案例研究

获取原文

摘要

In this paper, we present a real-life case study of a mobile healthcare application that leverages code offloading techniques to accelerate the execution of a complex deep neural network algorithm for analyzing audio samples. Resource-intensive machine learning tasks take a significant time to complete on high-end devices, while lower-end devices may outright crash when attempting to run them. In our experiments, offloading granted the former a 3.6x performance improvement, and up to 80% reduction in energy consumption; while the latter gained the capability of running a process they originally could not.
机译:在本文中,我们提供了一个移动医疗应用程序的真实案例研究,该应用程序利用代码分载技术来加速复杂的深度神经网络算法的执行,以分析音频样本。资源密集型机器学习任务需要花费大量时间才能在高端设备上完成,而低端设备在尝试运行它们时可能会完全崩溃。在我们的实验中,卸载使前者的性能提高了3.6倍,能耗降低了80%。而后者获得了运行流程的能力,而他们本来却没有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号