首页> 外文会议>IEEE International Conference on Robotics and Automation;ICRA '09 >Auxiliary models based multi-innovation gradient identification with colored measurement noises
【24h】

Auxiliary models based multi-innovation gradient identification with colored measurement noises

机译:基于辅助模型的多创新梯度识别与彩色测量噪声

获取原文

摘要

For pseudo-linear regression identification models corresponding output error systems with colored measurement noises, a difficulty of identification is that there exist unknown inner variables and unmeasurable noise terms in the information vector. This paper presents an auxiliary model based multi-innovation stochastic gradient algorithm by using the auxiliary model technique and by expanding the scalar innovation to an innovation vector. Compared with single-innovation stochastic gradient algorithm, the proposed approach can generate highly accurate parameter estimates. The simulation results confirm theoretical findings.
机译:对于伪线性回归识别模型,其相应的带有彩色测量噪声的输出误差系统的识别困难在于,信息向量中存在未知的内部变量和不可测量的噪声项。通过使用辅助模型技术并将标量创新扩展为创新向量,提出了一种基于辅助模型的多创新随机梯度算法。与单创新随机梯度算法相比,该方法可以生成高精度的参数估计。仿真结果证实了理论发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号