首页> 外文会议>IEEE International Conference on Computer and Communication Systems >A Deep Learning Model for Predicting Buy and Sell Recommendations in Stock Exchange of Thailand using Long Short-Term Memory
【24h】

A Deep Learning Model for Predicting Buy and Sell Recommendations in Stock Exchange of Thailand using Long Short-Term Memory

机译:使用长短期记忆预测泰国证券交易所买入和卖出推荐的深度学习模型

获取原文

摘要

Nowadays, the stock price prediction has been one of the most challenging problem to the AI research community. Most prediction techniques concentrate on forecasting the future prices of stocks based on conventional machine learning techniques. However, these techniques cannot capture long term dependencies in stock price data. Therefore, they cannot consider the relation between the current predicted data and the previous data in stock data. This research adopts deep learning techniques for predicting buy and sell recommendations in Stock Exchange of Thailand using Long Short-Term Memory. The proposed model can capture long term dependencies in stock price data in order to enhance the prediction accuracy. The accuracy of the proposed model is evaluated on five Stock Exchange of Thailand (SET) stocks, between 5 January 2015 and 29 December 2017, and compared the results with support vector machine, multilayer perceptron, decision tree, random forest, logistic regression and k-nearest neighbors. The experimental results signify that the proposed model can outperform all comparative models.
机译:如今,股价预测已成为AI研究界最具挑战性的问题之一。大多数预测技术着眼于基于常规机器学习技术预测股票的未来价格。但是,这些技术无法捕获股价数据中的长期依赖性。因此,他们无法考虑当前预测数据与库存数据中先前数据之间的关系。这项研究采用深度学习技术,使用长短期记忆预测泰国证券交易所的买入和卖出推荐。所提出的模型可以捕获股票价格数据中的长期依赖关系,以提高预测准确性。在2015年1月5日至2017年12月29日期间,对五种泰国证券交易所(SET)股票进行了评估,验证了模型的准确性,并将结果与​​支持向量机,多层感知器,决策树,随机森林,逻辑回归和k -最近的邻居。实验结果表明,所提出的模型可以胜过所有比较模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号