首页> 外文会议>ICCSE 2012;International Conference on computer science & education >kNN-MST-Agglomerative: A fast and scalable graph-based data clustering approach on GPU
【24h】

kNN-MST-Agglomerative: A fast and scalable graph-based data clustering approach on GPU

机译:kNN-MST-Agglomerative:GPU上基于图的快速可扩展数据聚类方法

获取原文

摘要

Data clustering is a distinctive method for analyzing complex networks in terms of functional relationships of the comprising elements. A number of graph-based algorithms have been proposed so far to tackle the complexity of the problem and many of them are based on the representation of data in the form of a minimum spanning tree (MST). In this work, we propose a graph-based agglomerative clustering method that is based the k-Nearest Neighbor (kNN) graphs and the Borůvka''s-MST Algorithm, (termed as, kNN-MST-Agglomerative). The proposed method is inherently parallel and in addition it is applicable to a wide class of practical problems involving large datasets. We demonstrate the performance of our method on a set of real-world biological networks constructed from a renowned breast cancer study.
机译:数据聚类是一种根据组成元素的功能关系分析复杂网络的独特方法。迄今为止,已经提出了许多基于图形的算法来解决该问题的复杂性,其中许多基于最小生成树(MST)形式的数据表示。在这项工作中,我们提出了一种基于图的聚集聚类方法,该方法基于k最近邻(kNN)图和Borůvka's-MST算法(称为kNN-MST-Agglomerative)。所提出的方法本质上是并行的,并且还适用于涉及大型数据集的各种实际问题。我们在一组由著名乳腺癌研究构建的真实世界生物网络上证明了我们方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号