首页> 外文会议>High performance computing >Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets
【24h】

Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets

机译:宇宙学模拟数据集有损压缩模式匹配技术的探索

获取原文
获取原文并翻译 | 示例

摘要

Because of the vast volume of data being produced by today's scientific simulations, lossy compression allowing user-controlled information loss can significantly reduce the data size and the I/O burden. However, for large-scale cosmology simulation, such as the Hardware/Hybrid Accelerated Cosmology Code (HACC), where memory overhead constraints restrict compression to only one snapshot at a time, the lossy compression ratio is extremely limited because of the fairly low spatial coherence and high irregularity of the data. In this work, we propose a pattern-matching (similarity searching) technique to optimize the prediction accuracy and compression ratio of SZ lossy compressor on the HACC data sets. We evaluate our proposed method with different configurations and compare it with state-of-the-art lossy compressors. Experiments show that our proposed optimization approach can improve the prediction accuracy and reduce the compressed size of quantization codes compared with SZ. We present several lessons useful for future research involving pattern-matching techniques for lossy compression.
机译:由于当今的科学模拟产生的数据量很大,有损压缩允许用户控制信息丢失,从而可以显着减少数据大小和I / O负担。但是,对于大规模宇宙学模拟(例如硬件/混合加速宇宙论代码(HACC)),其中内存开销约束将压缩一次限制为仅一个快照,因此由于空间一致性较低,因此有损压缩率受到极大限制以及数据的高度不规则性。在这项工作中,我们提出一种模式匹配(相似性搜索)技术,以优化HACC数据集上SZ有损压缩机的预测精度和压缩率。我们用不同的配置评估我们提出的方法,并将其与最新的有损压缩机进行比较。实验表明,与SZ相比,我们提出的优化方法可以提高预测精度,减少量化码的压缩大小。我们提供了一些有用的课程,可用于涉及模式匹配技术的有损压缩的未来研究。

著录项

  • 来源
    《High performance computing》|2017年|43-54|共12页
  • 会议地点 Frankfurt(DE)
  • 作者单位

    University of California, Riverside, CA, USA;

    Argonne National Laboratory, Lemont, IL, USA;

    University of California, Riverside, CA, USA;

    Argonne National Laboratory, Lemont, IL, USA,University of Illinois at Urbana-Champaign, Champaign, IL, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号