首页> 外文会议>Fuel Cell Seminar 2013 >Performance Envelope for Fuel Cell Heat Engine Hybrids and Heat Engine Combustors
【24h】

Performance Envelope for Fuel Cell Heat Engine Hybrids and Heat Engine Combustors

机译:燃料电池热机混合动力和热机燃烧器的性能包络

获取原文
获取原文并翻译 | 示例

摘要

The performance envelope for fuel cell heat engine hybrid cycles is developed and explored. The benefit of fuel cell heat engine hybrids in conversion of chemical energy was thermodynamically established. Fuel cell hybrids are combination of energy conversion sub-systems - fuel cells and heat engines. Fuel cell hybrids are important for the future for they are the most efficient devices when converting chemical energy of methane from renewable fuels to electricity. The power produced from an ideal fuel cell hybrid is a function of the current and the standard Gibbs free energy at unit activities. On the other side the operation of heat engines heated by a chemical reaction is based on the same principles, however the technical potential of direct electron transport is principally not used. The fuel cell allows an almost reversible operation at ambient temperature while the Carnot type engine operates principally reversible at a reversible Carnot temperature where the free enthalpy of the reaction is zero. Hybrid systems unify the benefits of both technologies and expand the possible range of operation to all temperatures between ambient and the above mentioned reversible Carnot temperature. The fuel cell hybrid performance is always higher than or equal to the heat engine combustor performance. It is higher until the Carnot temperature of 4,300K in the case of hydrogen combustion. By the same token, the fuel cell hybrid performance occurs over a limited temperature range due to the narrow operating temperatures of fuel cells. The practical operating temperature of a fuel cell, and hence the fuel cell heat engine hybrid, is less than 1,400K. At temperatures from 298K to 1,400K, the fuel cell hybrid performance exceeds all other performances, of course. The cooled fuel cell power case exceeds heat combustion performance until around 1.200K. This paper builds from and is an extension of several papers recently published in the Journal of The Electrochemical Society (ECS), ECS Transactions, and the Journal of Fuel Cell Science and Technology, and the International Journal of Hydrogen Energy.
机译:开发并探索了燃料电池热机混合循环的性能范围。热力学确定了燃料电池热机混合动力在化学能转化中的优势。燃料电池混合动力系统是能量转换子系统(燃料电池和热力发动机)的组合。燃料电池混合动力车对未来至关重要,因为它们是将甲烷的化学能从可再生燃料转换为电能时最有效的设备。理想燃料电池混合动力所产生的功率是单位活动时电流和标准吉布斯自由能的函数。另一方面,通过化学反应加热的热机的运行也基于相同的原理,但是原则上不使用直接电子传输的技术潜力。燃料电池允许在环境温度下几乎可逆地运行,而卡诺型发动机在可逆卡诺温度下基本上可逆地运行,其中反应的自由焓为零。混合动力系统统一了这两种技术的优势,并将可能的操作范围扩展到环境温度和上述可逆卡诺温度之间的所有温度。燃料电池混合动力性能始终高于或等于热机燃烧器性能。在氢气燃烧的情况下,直到卡诺温度为4,300K时,温度会更高。同样,由于燃料电池的窄工作温度,燃料电池混合动力性能在有限的温度范围内发生。燃料电池以及燃料电池热机混合动力的实际工作温度小于1,400K。当然,在298K至1400K的温度下,燃料电池混合动力性能超过了所有其他性能。冷却后的燃料电池电源盒超过了热燃烧性能,直到大约1.200K。本文是基于最近发表在《电化学学会杂志》(ECS),《 ECS交易》,《燃料电池科学与技术杂志》和《国际氢能期刊》上的几篇论文的延伸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号