首页> 外文会议>Fourth workshop on noisy user-generated text >Preferred Answer Selection in Stack Overflow: Better Text Representations ... and Metadata, Metadata, Metadata
【24h】

Preferred Answer Selection in Stack Overflow: Better Text Representations ... and Metadata, Metadata, Metadata

机译:堆栈溢出中的首选答案选择:更好的文本表示形式...和元数据,元数据,元数据

获取原文
获取原文并翻译 | 示例

摘要

Community question answering (cQA) forums provide a rich source of data for facilitating non-factoid question answering over many technical domains. Given this, there is considerable interest in answer retrieval from these kinds of forums. However this is a difficult task as the structure of these forums is very rich, and both metadata and text features are important for successful retrieval. While there has recently been a lot of work on solving this problem using deep learning models applied to question/answer text, this work has not looked at how to make use of the rich metadata available in cQA forums. We propose an attention-based model which achieves state-of-the-art results for text-based answer selection alone, and by making use of complementary metadata, achieves a substantially higher result over two reference datasets novel to this work.
机译:社区问题解答(cQA)论坛提供了丰富的数据源,可促进在许多技术领域进行非事实性问题解答。鉴于此,人们对从此类论坛中检索答案非常感兴趣。但是,这是一项艰巨的任务,因为这些论坛的结构非常丰富,元数据和文本功能对于成功检索都很重要。尽管最近有很多工作通过使用应用于问题/答案文本的深度学习模型来解决此问题,但这项工作尚未研究如何利用cQA论坛中可用的丰富元数据。我们提出了一种基于注意力的模型,该模型可仅针对基于文本的答案进行选择,从而获得最先进的结果,并且通过使用互补的元数据,在这项工作中新颖的两个参考数据集上可获得更高的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号