首页> 外文会议>Evolutionary Multi-Criterion Optimization; Lecture Notes in Computer Science; 4403 >Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES
【24h】

Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES

机译:多目标CMA-ES中的稳态选择和有效协方差矩阵更新

获取原文
获取原文并翻译 | 示例

摘要

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) combines a mutation operator that adapts its search distribution to the underlying optimization problem with multi-criteria selection. Here, a generational and two steady-state selection schemes for the MO-CMA-ES are compared. Further, a recently proposed method for computationally efficient adaptation of the search distribution is evaluated in the context of the MO-CMA-ES.
机译:多目标协方差矩阵适应进化策略(MO-CMA-ES)结合了一个变异算子,该变异算子通过多准则选择将其搜索分布适应于潜在的优化问题。在此,比较了MO-CMA-ES的世代和两种稳态选择方案。此外,在MO-CMA-ES的背景下评估了最近提出的用于计算有效地匹配搜索分布的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号