首页> 外文会议>Evolutionary Multi-Criterion Optimization; Lecture Notes in Computer Science; 4403 >A Multi-objective Evolutionary Approach for Phylogenetic Inference
【24h】

A Multi-objective Evolutionary Approach for Phylogenetic Inference

机译:系统发育推理的多目标进化方法

获取原文
获取原文并翻译 | 示例

摘要

The phylogeny reconstruction problem consists of determining the most accurate tree that represents evolutionary relationships among species. Different criteria have been employed to evaluate possible solutions in order to guide a search algorithm towards the best tree. However, these criteria may lead to distinct phylogenies, which are often conflicting among them. In this context, a multi-objective approach can be useful since it could produce a spectrum of equally optimal trees (Pareto front) according to all criteria. We propose a multi-objective evolutionary algorithm, named PhyloMOEA, which employs the maximum parsimony and likelihood criteria to evaluate solutions. PhyloMOEA was tested using four datasets of nucleotide sequences. This algorithm found, for all datasets, a Pareto front representing a trade-off between the criteria. Moreover, SH-test showed that most of solutions have scores similar to those obtained by phylogenetic programs using one criterion.
机译:系统发育重建问题包括确定代表物种之间进化关系的最准确的树。为了将搜索算法引向最佳树,已采用了不同的标准来评估可能的解决方案。但是,这些标准可能会导致不同的系统发育,而这些系统发育通常相互冲突。在这种情况下,多目标方法可能会很有用,因为它可以根据所有标准产生一系列最优树(Pareto front)。我们提出了一种名为PhyloMOEA的多目标进化算法,该算法采用最大简约性和似然准则来评估解决方案。使用四个核苷酸序列数据集对PhyloMOEA进行了测试。对于所有数据集,该算法都会找到一个Pareto前沿,代表标准之间的折衷。此外,SH测试表明,大多数解决方案的得分与使用一个标准的系统进化程序获得的得分相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号