首页> 外文会议>Evolutionary Multi-Criterion Optimization; Lecture Notes in Computer Science; 4403 >FastPGA: A Dynamic Population Sizing Approach for Solving Expensive Multiobjective Optimization Problems
【24h】

FastPGA: A Dynamic Population Sizing Approach for Solving Expensive Multiobjective Optimization Problems

机译:FastPGA:解决昂贵的多目标优化问题的动态人口规模确定方法

获取原文
获取原文并翻译 | 示例

摘要

We present a new multiohjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA). FastPGA uses a new fitness assignment and ranking strategy for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. A population regulation operator is introduced to dynamically adapt the population size as needed up to a user-specified maximum population size. Computational results for a number of well-known test problems indicate that FastPGA is a promising approach. FastPGA outperforms the improved nondominated sorting genetic algorithm (NSGA-II) within a relatively small number of solution evaluations.
机译:我们提出了一种新的多目标进化算法(MOEA),称为快速帕累托遗传算法(FastPGA)。 FastPGA使用新的适应性分配和排名策略来同时优化多个目标,其中每个解决方案评估在计算和/或财务上都是昂贵的。当找到解决方案涉及时间或资源限制时,通常会出现这种情况。引入了人口调节操作员,以根据需要动态调整人口规模,直至用户指定的最大人口规模。许多众所周知的测试问题的计算结果表明,FastPGA是一种很有前途的方法。在相对较少的解决方案评估范围内,FastPGA优于改进的非支配排序遗传算法(NSGA-II)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号