首页> 外文会议>Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; Lecture Notes in Computer Science; 4447 >Genetic Programming and Other Machine Learning Approaches to Predict Median Oral Lethal Dose (LD_(50)) and Plasma Protein Binding Levels (PPB) of Drugs
【24h】

Genetic Programming and Other Machine Learning Approaches to Predict Median Oral Lethal Dose (LD_(50)) and Plasma Protein Binding Levels (PPB) of Drugs

机译:遗传编程和其他机器学习方法可预测药物的口服中位数致死剂量(LD_(50))和血浆蛋白结合水平(%PPB)

获取原文
获取原文并翻译 | 示例

摘要

Computational methods allowing reliable pharmacokinetics predictions for newly synthesized compounds are critically relevant for drug discovery and development. Here we present an empirical study focusing on various versions of Genetic Programming and other well known Machine Learning techniques to predict Median Oral Lethal Dose (LD_(50)) and Plasma Protein Binding (%PPB) levels. Since these two parameters respectively characterize the harmful effects and the distribution into human body of a drug, their accurate prediction is essential for the selection of effective molecules. The obtained results confirm that Genetic Programming is a promising technique for predicting pharmacokinetics parameters, both from the point of view of the accurateness and of the generalization ability.
机译:允许对新合成的化合物进行可靠的药代动力学预测的计算方法与药物发现和开发至关重要。在这里,我们提出了一项经验研究,重点研究了各种版本的遗传编程和其他众所周知的机器学习技术,以预测中位口服致死剂量(LD_(50))和血浆蛋白结合(%PPB)的水平。由于这两个参数分别表征了药物的有害作用和在人体中的分布,因此它们的准确预测对于选择有效分子至关重要。所得结果证实,从准确性和泛化能力的角度来看,遗传程序设计是预测药代动力学参数的有前途的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号