首页> 外文会议>Evolutionary computation, machine learning and data mining in bioinformatics >ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins
【24h】

ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins

机译:基于ACO的贝叶斯网络集成,用于与年龄相关的蛋白质的分层分类

获取原文
获取原文并翻译 | 示例

摘要

The task of predicting protein functions using computational techniques is a major research area in the field of bioinformatics. Casting the task into a classification problem makes it challenging, since the classes (functions) to be predicted are hierarchically related, and a protein can have more than one function. One approach is to produce a set of local classifiers; each is responsible for discriminating between a subset of the classes in a certain level of the hierarchy. In this paper we tackle the hierarchical classification problem in a local fashion, by learning an ensemble of Bayesian network classifiers for each class in the hierarchy and combining their outputs with four alternative methods: a) selecting the best classifier, b) majority voting, c) weighted voting, and d) constructing a meta-classifier. The ensemble is built using ABC-Miner, our recently introduced Ant-based Bayesian Classification algorithm. We use different types of protein representations to learn different classification models. We empirically evaluate our proposed methods on an ageing-related protein dataset created for this research.
机译:使用计算技术预测蛋白质功能的任务是生物信息学领域的主要研究领域。由于要预测的类别(功能)在层次上是相关的,并且蛋白质可以具有多个功能,因此将任务放入分类问题使其具有挑战性。一种方法是产生一组局部分类器。每个负责区分层次结构中某个级别的类的子集。在本文中,我们通过学习层次结构中每个类别的贝叶斯网络分类器的集合并将其输出与四种替代方法结合起来,以本地方式解决层次分类问题:a)选择最佳分类器,b)多数投票,c )加权投票,以及d)构建元分类器。该集合是使用ABC-Miner构建的,ABC-Miner是我们最近推出的基于蚂蚁的贝叶斯分类算法。我们使用不同类型的蛋白质表示来学习不同的分类模型。我们根据为该研究创建的与衰老相关的蛋白质数据集经验地评估了我们提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号