D~2MOPSO is a multi-objective particle swarm optimizer that incorporates the dominance concept with the decomposition approach. Whilst decomposition simplifies the multi-objective problem (MOP) by rewriting it as a set of aggregation problems, solving these problems simultaneously, within the PSO framework, might lead to premature convergence because of the leader selection process which uses the aggregation value as a criterion. Dominance plays a major role in building the leader's archive allowing the selected leaders to cover less dense regions avoiding local optima and resulting in a more diverse approximated Pareto front. Results from 10 standard MOPs show D~2MOPSO outperforms two state-of-the-art decomposition based evolutionary methods.
展开▼