首页> 外文会议>Evolutionary computation in combinatorial optimization. >D~2MOPSO: Multi-Objective Particle Swarm Optimizer Based on Decomposition and Dominance
【24h】

D~2MOPSO: Multi-Objective Particle Swarm Optimizer Based on Decomposition and Dominance

机译:D〜2MOPSO:基于分解和优势的多目标粒子群优化器

获取原文
获取原文并翻译 | 示例

摘要

D~2MOPSO is a multi-objective particle swarm optimizer that incorporates the dominance concept with the decomposition approach. Whilst decomposition simplifies the multi-objective problem (MOP) by rewriting it as a set of aggregation problems, solving these problems simultaneously, within the PSO framework, might lead to premature convergence because of the leader selection process which uses the aggregation value as a criterion. Dominance plays a major role in building the leader's archive allowing the selected leaders to cover less dense regions avoiding local optima and resulting in a more diverse approximated Pareto front. Results from 10 standard MOPs show D~2MOPSO outperforms two state-of-the-art decomposition based evolutionary methods.
机译:D〜2MOPSO是一种多目标粒子群优化器,将优势概念与分解方法结合在一起。虽然分解通过将多目标问题重写为一组聚合问题而简化了多目标问题(MOP),但由于在领导者选择过程中使用聚合值作为准则,因此在PSO框架内同时解决这些问题可能会导致过早收敛。 。主导地位在建立领导者档案库中起着重要作用,使选定的领导者能够覆盖密度较低的区域,从而避免局部最优,从而获得更多样化的近似帕累托阵线。 10个标准MOP的结果表明D〜2MOPSO优于两种基于最新分解的进化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号