首页> 外文会议>Efficient Algorithms for Global Optimization Methods in Computer Vision >Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty
【24h】

Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty

机译:通过最小化凸函数和总广义变分惩罚来恢复分段平滑多通道图像

获取原文
获取原文并翻译 | 示例

摘要

We study and extend the recently introduced total generalized variation (TGV) functional for multichannel images. This functional has already been established to constitute a well-suited convex model for piecewise smooth scalar images. It comprises exactly the functions of bounded variation but is, unlike purely total-variation based functionals, also aware of higher-order smoothness. For the multichannel version which is developed in this paper, basic properties and existence of mini-mizers for associated variational problems regularized with second-order TGV is shown. Furthermore, we address the design of numerical solution methods for the minimization of functionals with TGV~2 penalty and present, in particular, a class of primal-dual algorithms. Finally, the concrete realization for various image processing problems, such as image denoising, deblurring, zooming, dequantization and compressive imaging, are discussed and numerical experiments are presented.
机译:我们研究并扩展了最近推出的多通道图像总广义变异(TGV)功能。已经建立了此功能,以构成适用于分段平滑标量图像的凸模型。它恰好包含有界变化的函数,但是与纯粹基于总变化的函数不同,它还知道高阶平滑度。对于本文开发的多通道版本,显示了针对由二阶TGV正则化的相关变化问题的最小化器的基本特性和存在。此外,我们提出了用TGV〜2罚分最小化泛函的数值求解方法的设计,并提出了一种特殊的原始对偶算法。最后,讨论了图像去噪,去模糊,缩放,去量化和压缩成像等各种图像处理问题的具体实现,并进行了数值实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号