首页> 外文会议>Conference on Computational Modeling of Materials, Minerals and Metals Processing, Sep 23-26, 2001, San Diego, California, USA >COMPUTING THE DYNAMIC INTERACTION OF MAGNETIC FIELDS AND TURBULENT CONDUCTING FLUIDS IN METALS PROCESSING
【24h】

COMPUTING THE DYNAMIC INTERACTION OF MAGNETIC FIELDS AND TURBULENT CONDUCTING FLUIDS IN METALS PROCESSING

机译:计算金属加工中磁场与湍流的动力相互作用

获取原文
获取原文并翻译 | 示例

摘要

Magnetic fields have many actual applications in the metals processing industry. Externally applied magnetic fields give rise to electromagnetic (Lorentz) forces formed by the cross product JXB, between the induced current density J and the magnetic field density B. When the metal is in liquid form, the Lorentz force generates motion in the fluid which in applications of practical interest becomes turbulent. In modelling terms, the Lorentz force appears as a source in the momentum equations. In addition, the induced current generates heat (Joule heating) in the metal that is in proportion to J~2, with a corresponding source of heat in the energy equation. Whether as heat or as a force, these effects represent action at a distance - a most useful attribute when dealing with hot metal. The Lorentz force is used to stir solidifying alloys, pump liquid metal in conduits, dampen the flow in the meniscus of a continuous caster, levitate metal drops, induce artificial gravity conditions in suspensions or contain liquid metal. Elsewhere, the Lorentz force may be a by-product of some other operation, so leading to wave excitation in aluminium electrolysis cells, or altering the shape of the weld pool in arc welding. Joule heating is most commonly used with applied AC fields, to melt metal in induction furnaces. The author and his colleagues have been involved in the modelling of most of these processes in the past decade. Modelling is not however straightforward, since most of the examples mentioned represent genuine multi-physics challenges. There is a strong coupling between the flow field and electromagnetic field. The addition of a dynamically varying metal free surface and the moving solidus front means the flow, heat and electromagnetic fields need to be computed simultaneously. In situations involving metal containment, the metal free surface position is governed by the interplay of gravity, Lorentz force, surface tension and fluid inertia. Since all the interesting effects often happen in thin boundary layers at the surface due to the skin effect, mesh generation and mesh control during the computation become non trivial problems that need to be addressed. This paper presents a review of numerical methods used to model droplet levitation, semi-levitation melting and cold crucible induction melting of metals. The first method is based on spectral collocation techniques and the second is the traditional FV approach. Steps taken to validate the computations and typical transient results are also given.
机译:磁场在金属加工行业中有许多实际应用。外部施加的磁场会引起由叉积JXB在感应电流密度J和磁场密度B之间形成的电磁力(洛伦兹)。当金属呈液态时,洛伦兹力会在流体中产生运动,从而使流体运动。具有实际意义的应用变得动荡不安。用建模术语来说,洛伦兹力是动量方程中的源。另外,感应电流在金属中产生与J〜2成比例的热量(焦耳加热),并且在能量方程中具有相应的热源。无论是作为热量还是作为力量,这些效果都代表了远距离的作用-处理铁水时最有用的属性。洛伦兹力用于搅拌凝固的合金,将液态金属泵入管道,抑制连铸机弯月面的流动,悬浮金属滴,在悬浮液中引起人为重力条件或包含液态金属。在其他地方,洛伦兹力可能是其他操作的副产品,因此会导致铝电解池中的波激发,或者在电弧焊中改变焊池的形状。焦耳加热最常与施加的交流电场一起使用,以熔化感应炉中的金属。在过去的十年中,作者和他的同事已经参与了大多数这些过程的建模。然而,建模并不是简单明了的,因为提到的大多数示例都代表了真正的多物理场挑战。流场与电磁场之间存在强耦合。动态变化的金属自由表面和移动的固相线前端的添加意味着需要同时计算流量,热量和电磁场。在涉及金属围堵的情况下,金属的自由表面位置取决于重力,洛伦兹力,表面张力和流体惯性的相互作用。由于所有的有趣效果通常由于集肤效应而经常发生在表面的薄边界层中,因此在计算过程中网格生成和网格控制成为需要解决的不平凡的问题。本文介绍了用于建模金属液滴悬浮,半悬浮熔化和冷坩埚感应熔化的数值方法。第一种方法是基于频谱搭配技术,第二种是传统的FV方法。还给出了验证计算结果和典型瞬态结果的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号