【24h】

Mining and Learning Latent Dynamics in Biological Manifolds

机译:生物流形中挖掘和学习潜在动力学

获取原文
获取原文并翻译 | 示例

摘要

Quantitative analysis in systems biology often deals with noisy and complex high-dimensional problems. In genomics, for instance, measurements of gene expression changes are usually obtained through various experimental conditions, and when these conditions correspond to time points, only a few of them are usually available. This is an unfortunate fact, as with small sample sizes it becomes hard to capture any form of dependence structure in the data. Thus, key information about gene co-expression and co-regulation dynamics may be missed preventing from a reliable reconstruction of the underlying gene-gene interaction network. It is often an advantage to be able to exploit the sparsity and achieve the intrinsic dimensionality properties of biological systems under exam. Such noisy high-dimensional systems depend on complex latent dynamics that may be viewed as mixtures of informative sources with unknown statistical distribution and subject to unknown mixing mechanism. Blind source separation techniques, fuzzy rules, embedding principles and entropic measures represent useful methodological tools for disentanglement of the dynamics. We report results from data obtained by perturbation experiments and gene network reconstruction and inference.
机译:系统生物学中的定量分析通常处理嘈杂且复杂的高维问题。例如,在基因组学中,通常通过各种实验条件获得基因表达变化的测量值,并且当这些条件对应于时间点时,通常只有其中几个是可用的。这是一个不幸的事实,因为样本量较小,很难在数据中捕获任何形式的依赖结构。因此,可能会错过有关基因共表达和共调控动态的关键信息,从而无法对潜在的基因-基因相互作用网络进行可靠的重建。能够利用稀疏性并实现被检查生物系统的固有维数特性通常是一个优势。这种嘈杂的高维系统取决于复杂的潜伏动力学,这些潜伏动力学可能被视为具有未知统计分布且受制于未知混合机制的信息源的混合物。盲源分离技术,模糊规则,嵌入原理和熵测度是解决动力学纠缠的有用方法论工具。我们报告了通过微扰实验以及基因网络重构和推断获得的数据的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号