首页> 外文会议>Conference on Image Processing >Graph Search - Active Appearance Model based Automated Segmentation of Retinal Layers for Optic Nerve Head Centered OCT Images
【24h】

Graph Search - Active Appearance Model based Automated Segmentation of Retinal Layers for Optic Nerve Head Centered OCT Images

机译:图搜索-基于主动外观模型的视网膜神经中心OCT图像的视网膜层自动分割

获取原文

摘要

In this paper, a novel approach combining the active appearance model (AAM) and graph search is proposed to segment retinal layers for optic nerve head(ONH) centered optical coherence tomography(OCT) images. The method includes two parts: preprocessing and layer segmentation. During the preprocessing phase, images is first filtered for denoising, then the B-scans are flattened. During layer segmentation, the AAM is first used to obtain the coarse segmentation results. Then a multi-resolution GS-AAM algorithm is applied to further refine the results, in which AAM is efficiently integrated into the graph search segmentation process. The proposed method was tested on a dataset which containedl 13-D SD-OCT images, and compared to the manual tracings of two observers on all the volumetric scans. The overall mean border positioning error for layer segmentation was found to be7.09 ± 6.18μm for normal subjects. It was comparable to the results of traditional graph search method (8.03±10.47μm) and mean inter-observer variability (6.35±6.93μm).The preliminary results demonstrated the feasibility and efficiency of the proposed method.
机译:本文提出了一种结合主动外观模型(AAM)和图搜索的新颖方法,用于分割以视神经头(ONH)为中心的光学相干断层扫描(OCT)图像的视网膜层。该方法包括两部分:预处理和层分割。在预处理阶段,首先对图像进行滤波以进行降噪,然后将B扫描展平。在层分割期间,首先使用AAM获得粗分割结果。然后应用多分辨率GS-AAM算法进一步优化结果,其中AAM被有效地集成到图搜索分割过程中。该方法在包含13D SD-OCT图像的数据集上进行了测试,并与所有体积扫描中两名观察员的手动描迹进行了比较。对于正常受试者,分层分割的总体平均边界定位误差为7.09±6.18μm。与传统的图搜索方法(8.03±10.47μm)和平均观察者间变异性(6.35±6.93μm)相比,该结果可证明该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号