首页> 外文会议>Plasmonics in Biology and Medicine XVI >Nanoholes arrays as effective SERS substrates with multiple wavelength SERS response and large electromagnetic SERS enhancement factors
【24h】

Nanoholes arrays as effective SERS substrates with multiple wavelength SERS response and large electromagnetic SERS enhancement factors

机译:纳米孔阵列作为有效的SERS基板,具有多个波长SERS响应和较大的电磁SERS增强因子

获取原文
获取原文并翻译 | 示例

摘要

Bridged-bowtie nanohole arrays and cross bridged-bowtie nanohole arrays in a gold film are presented as surfaceenhancedRaman scattering (SERS) substrates. We employed the numerical FDTD method to calculate the maximumelectromagnetic SERS enhancement factor (EF) as a function of wavelength. It is found that the proposed nanoholearrays do not only display an extremely large enhancement factor but also have the hotspot spread over a larger areacompared to the various other nanopillar structures. The calculation of electromagnetic SERS enhancement factorreveals that the cross bridged-bowtie nanohole arrays exhibit the maximum electromagnetic SERS EF of ~ 10~9 spreadingover an area of 100 nm~2. In addition, the electromagnetic SERS EF of ~ 10~8 is spread over 500 nm~2 area which is higherthan hotspot area in case of nanopillar structures. The resonance wavelength of the nanohole array can be tuned byvarying the size of the nanoholes. These nanohole arrays can be employed both in transmission as well as in reflectionmode as effective SERS substrates. In addition, bridged-bowtie and cross bridged-bowtie nanohole arrays show thesignificantly high electromagnetic SERS EF at more than one wavelength and therefore are useful for applicationinvolving multiple wavelength SERS response. Furthermore, the cross bridged-bowtie nanohole array exhibit the spatialtunability of hotspot by rotating the direction of polarization of incident field.
机译:金膜中的桥状纳米孔阵列和交叉桥状纳米孔阵列作为表面增强\ r \ n拉曼散射(SERS)衬底呈现。我们采用数值FDTD方法计算最大\ r \ n电磁SERS增强因子(EF)作为波长的函数。发现所提出的纳米孔阵列不仅显示出极大的增强因子,而且与其他各种纳米柱结构相比,热点分布在更大的区域上。电磁SERS增强因子的计算表明,跨桥式蝶形纳米孔阵列在100 nm〜2的范围内展布的最大电磁SERS EF为〜10〜9。另外,〜10〜8的电磁SERS EF分布在500 nm〜2的区域,比纳米柱结构的热点区域高。可以通过改变纳米孔的尺寸来调节纳米孔阵列的共振波长。这些纳米孔阵列可以作为有效的SERS基板用于透射和反射模式。另外,桥式领结和交叉桥式领结纳米孔阵列在一个以上的波长处显示出很高的电磁SERS EF,因此可用于涉及多波长SERS响应的应用。此外,交叉桥接的蝴蝶结纳米孔阵列通过旋转入射场的极化方向显示热点的空间\ n \ n可调性。

著录项

  • 来源
    《Plasmonics in Biology and Medicine XVI》|2019年|1089418.1-1089418.8|共8页
  • 会议地点 1605-7422;2410-9045
  • 作者单位

    Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;

    Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;

    Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India adhawan@ee.iitd.ac.in;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号