首页> 外文会议>Bioelectronics, biomedical, and bioinspired systems V; and Nanotechnology V >ZnO core spike particles and nano-networks and their wide range of applications
【24h】

ZnO core spike particles and nano-networks and their wide range of applications

机译:ZnO核心尖峰粒子和纳米网络及其广泛的应用

获取原文
获取原文并翻译 | 示例

摘要

In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter
机译:在我们的方法中,我们正在生产一种聚合物复合材料,该材料具有ZnO核心尖峰颗粒作为凹形填料。通过高通量方法合成核尖峰颗粒。使用PDMS(聚二甲基硅氧烷)作为基质材料,芯钉颗粒不仅实现了高机械强度,而且还以非常有趣的方式影响了其他材料的性能,从而使这种复合材料在广泛的应用中非常有趣。在非常相似的合成路线中,产生了纳米级的ZnO网络。作为陶瓷,此网络可以承受1300 K的高温。此外,该材料还具有很高的弹性。要找到具有这两种特性的材料是一项艰巨的任务,因为聚合物往往会在较低的温度下分解并且金属会熔化。尤其是在环境条件下,氧气通常会在这些温度下对金属造成问题。如果该材料同时是半导体,则它作为多功能材料具有很高的潜力。陶瓷或经典半导体(例如III-V或IIVI型)具有高温稳定性,但通常较脆。这在纳米尺度上是不同的。即使是直径很小的半导体线(如硅)也不会轻易建立足够的应力,从而在弯曲时导致失效,因为在一阶近似值下,纤维的最大应力会随其直径缩放

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号