【24h】

Layer-Oriented on Paper, Laboratory and soon on the Sky

机译:面向纸张,实验室和即将面世的分层

获取原文
获取原文并翻译 | 示例

摘要

Layer Oriented represented in the last few years a new and promising approach to solve the problems related to the limited field of view achieved by classical Adaptive Optics systems. It is basically a different approach to multi conjugate adaptive optics, in which pupil plane wavefront sensors (like the pyramid one) are conjugated to the same altitudes as the deformable mirrors. Each wavefront sensor is independently driving its conjugated deformable mirror thus simplifying strongly the complexity of the wavefront computers used to reconstruct the deformations and drive the mirror themselves, fact that can become very important in the case of extremely large telescopes where the complexity is a serious issue. The fact of using pupil plane wavefront sensors allows for optical co-addition of the light at the level of the detector thus increasing the SNR of the system and permitting the usage of faint stars, improving the efficiency of the wavefront sensor. Furthermore if coupled to the Pyramid wavefront sensor (because of its high sensitivity), this technique is actually performing a very efficient usage of the light leading to the expectation that, even by using only natural guide stars, a good sky coverage can be achieved, above all in the case of giant telescopes. These are the main reasons for which in the last two years several projects decided to make MCAO systems based on the Layer Oriented technique. This is the case of MAD (an MCAO demonstrator that ESO is building with one wavefront sensing channel based on the Layer Oriented concept) and NIRVANA (an instrument for LBT). Few months ago we built and successfully tested a first prototype of a layer oriented wavefront sensor and experiments and demonstrations on the sky are foreseen even before the effective first light of the above mentioned instruments. The current situation of all these projects is presented, including the extensive laboratory testing and the on-going experiments on the sky.
机译:在过去的几年中,面向层代表了一种新的有前途的方法,用于解决与经典自适应光学系统实现的有限视野相关的问题。对于多共轭自适应光学,这基本上是一种不同的方法,其中光瞳平面波前传感器(像金字塔一样)被共轭到与可变形反射镜相同的高度。每个波前传感器都独立地驱动其共轭可变形镜,从而极大地简化了用于重构变形和驱动镜本身的波前计算机的复杂性,这一事实对于复杂度非常重要的超大型望远镜而言可能变得非常重要。 。使用光瞳平面波阵面传感器的事实允许在检测器的水平上对光进行光学共加,从而增加系统的SNR,并允许使用微弱的恒星,从而提高了波阵面传感器的效率。此外,如果与金字塔波前传感器耦合(由于其高灵敏度),则该技术实际上可以非常有效地利用光,从而导致人们期望,即使仅使用自然导星,也可以获得良好的天空覆盖,首先是巨型望远镜。这些都是最近两年来一些项目决定基于层定向技术制造MCAO系统的主要原因。 MAD(ESO正在基于面向层概念的一个波前感测通道构建的MCAO演示器)和NIRVANA(用于LBT的仪器)就是这种情况。几个月前,我们构建并成功测试了面向层的波前传感器的第一个原型,并且甚至在上述仪器有效的第一道曙光之前,就已经预见到了天空上的实验和演示。介绍了所有这些项目的当前状况,包括广泛的实验室测试和正在进行的空中实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号