首页> 外文会议>ASNT fall conference and quality testing show : Paper summaries >The Detection of Subsurface Defects in Composite Structures by the Application of a Remote Acoustic Doppler Technique
【24h】

The Detection of Subsurface Defects in Composite Structures by the Application of a Remote Acoustic Doppler Technique

机译:应用远程声学多普勒技术检测复合结构中的次表面缺陷

获取原文
获取原文并翻译 | 示例

摘要

The non-contacting Acoustic/Doppler system discussed in this paper is unique and employs a proprietary design acoustic transducer which produces an air coupled shock or pressure wave, similar to that produced from a small explosion. This is achieved by discharging a high voltage electrical capacitor within a period of <5 μsec. The discharge is contained within a small ceramic chamber with an annular design anode providing an exit for the hot gasses which are a result of the discharge. The result of this configuration is that a single brief, but extremely high velocity shock wave of broadly unidirectional characteristics is launched into the air and used to impact and excite the object undergoing testing. The objective of the brief impact of white noise is to excite natural relaxation frequencies in the object and avoid any "blanketing" effect that would be present if continuos wave white noise was applied. Surface relaxation frequencies for any given material are dependent upon the underlying substructure of the object. In many respects this technique is analogous to tapping a surface with the edge of a coin and if there is a subsurface defect such as a debond then the resulting relaxation frequencies make a hollow sound. Audible responses are very difficult to quantify; furthermore physical contact is not always an option. However, the properly applied study of these relaxation frequencies is a very good nondestructive testing technique. In the case of this technology we are recording and analyzing the resulting relaxation frequencies excited by our acoustic pressure wave up to 50 kHz.
机译:本文讨论的非接触式声学/多普勒系统是独特的,并采用了专有设计的声换能器,该换能器会产生空气耦合的冲击波或压力波,类似于小爆炸所产生的冲击波或压力波。这可以通过在<5微秒的时间内对高压电容器放电来实现。放电物包含在一个小陶瓷腔室内,该陶瓷腔室具有环形设计的阳极,该阳极为排出的热气体提供出口。这种配置的结果是,一个单一的但具有极高单向特性的超高速冲击波被发射到空中,并被用来冲击和激发正在测试的物体。白噪声短暂影响的目的是激发物体的自然弛豫频率,并避免在施加连续波白噪声时会出现的任何“消隐”效应。任何给定材料的表面弛豫频率取决于对象的基础子结构。在许多方面,该技术类似于用硬币的边缘敲击表面,并且如果存在次表面缺陷(例如脱胶),则产生的松弛频率会发出空心声。声音响应很难量化。此外,身体接触并不总是一种选择。但是,正确应用这些弛豫频率的研究是一种非常好的无损检测技术。在这种技术的情况下,我们正在记录和分析由我们的声压波(高达50 kHz)激发的最终弛豫频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号