首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.1; 20070514-17; Montreal(CA) >ADVANCED CONTROLS FOR FUEL CONSUMPTION AND TIME-ON-WING OPTIMIZATION IN COMMERCIAL AIRCRAFT ENGINES
【24h】

ADVANCED CONTROLS FOR FUEL CONSUMPTION AND TIME-ON-WING OPTIMIZATION IN COMMERCIAL AIRCRAFT ENGINES

机译:商用飞机发动机燃油消耗和机翼运行时间的高级控制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper introduces an architecture that improves the existing interface between flight control and engine control. The architecture is based on an on-board dynamic engine model, and advanced control and estimation techniques. It utilizes a Tracking Filter (TF) to estimate model parameters and thus allow a nominal model to match any given engine. The TF is combined with an Extended Kalman Filter (EKF) to estimate unmeasured engine states and performance outputs, such as engine thrust and turbine temperatures. These estimated outputs are then used by a Model Predictive Control (MPC), which optimizes engine performance subject to operability constraints. MPC objective and constraints are based on the aircraft operation mode. For steady-state operation, the MPC objective is to minimize fuel consumption. For transient operation, such as idle-to-takeoff, the MPC goal is to track a thrust demand profile, while minimizing turbine temperatures for extended engine time-on-wing. Simulations at different steady-state conditions over the flight envelope show important fuel savings with respect to current control technology. Simulations for a set of usual transient show that the TF/EKF/MPC combination can track a desired transient thrust profile and achieve significant reductions in peak and steady-state turbine gas and metal. These temperature reductions contribute heavily to extend the engine time-on-wing. Results for both steady state and transient operation modes are shown to be robust with respect to engine-engine variability, engine deterioration, and flight envelope operating point conditions. The approach proposed provides a natural framework for optimal accommodation of engine faults through integration with fault detection algorithms followed by update of the engine modeland optimization constraints consistent with the fault. This is a potential future work direction.
机译:本文介绍了一种体系结构,该体系结构改进了飞行控制和引擎控制之间的现有接口。该架构基于机载动态引擎模型以及先进的控制和估计技术。它利用跟踪滤波器(TF)估算模型参数,从而允许标称模型匹配任何给定的引擎。 TF与扩展卡尔曼滤波器(EKF)结合在一起,可以估算未测发动机状态和性能输出,例如发动机推力和涡轮温度。然后,模型预测控制(MPC)会使用这些估计的输出,该模型会根据可操作性约束来优化发动机性能。 MPC的目标和约束条件取决于飞机的运行模式。对于稳态运行,MPC的目标是将油耗降至最低。对于瞬态运行(例如空转至起飞),MPC的目标是跟踪推力需求曲线,同时将涡轮温度降至最低,以延长发动机的机翼时间。在飞行包络线的不同稳态条件下进行的仿真显示,相对于当前的控制技术,可节省大量燃油。对一组常用瞬态的仿真表明,TF / EKF / MPC组合可以跟踪所需的瞬态推力曲线,并显着降低峰值和稳态涡轮气体和金属。这些温度降低在很大程度上延长了发动机的飞行时间。相对于发动机-发动机可变性,发动机退化和飞行包线工作点条件,稳态和瞬态运行模式的结果均显示出稳健性。所提出的方法通过与故障检测算法集成,然后更新发动机模型和与故障一致的优化约束,为发动机故障的最佳解决提供了自然的框架。这是未来的潜在工作方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号