首页> 外文会议>応用物理学会春季学術講演会;応用物理学会 >Room-temperature colossal spin Hall effect in topological insulator Bi_(0.9)_(o.1)(012) thin films for ultra-low-power spin-orbit-torque switching
【24h】

Room-temperature colossal spin Hall effect in topological insulator Bi_(0.9)_(o.1)(012) thin films for ultra-low-power spin-orbit-torque switching

机译:拓扑绝缘体Bi_(0.9)_(o.1)(012)薄膜的室温巨大自旋霍尔效应用于超低功率自旋轨道-转矩切换

获取原文

摘要

Spin-orbit-torque (SOT) switching using the spin Hall effect (SHE) in heavy metals and topological insulators (TIs) has great potential for ultra-low power magnetoresistive random-access memory (MRAM). To be competitive with conventional spin-transfer-torque switching, a pure spin current source with large spin Hall angle ( θSH >1)and high electrical conductivity (cr>105 Q-1m1) is required. However, there is no spin Hall material so far that satisfies these two conditions simultaneously; heavy metals (P-Ta, Pt, W) show highσ 〜105-106Ω1m1but small spin Hall angle (θSH〜0.08-0.4) [1-3], while topological insulators (TIs) have large θ SH〜2-18.8 but lowσ 〜103-104 Q-1m1 [4,5]). Here, we report the colossal SHE effect in conductive TI BiogSbo i(012) thin films (5-10 nm). We demonstrate that Bio.9Sb0.1(012) thin films have large σ 〜2.5x105 Ω1-m-1and colossal θSH〜52 at room temperature [6,7]. Figure 1(a) compare the room-temperature θSH, σ, and spin Hall conductivity osh of several heavy metals and TIs. In term of σ sh, BiSb outperforms the nearest competitor (Pt) by a factor of 30, and other TIs by a factor of 100. Figures 1(b) and 1(c) demonstrate SOT switching in a 100μmx50 μm Hall bar of Bi0.9Sb0.1(012) (5 nm)/Mn0.45Ga0.55 (3 nm) bi-layer with an applied in-plane magnetic field of ±3.5 kOe, respectively. The cntical current density of 1.5x106 A/cm2 for SOT switching of MnGa is one to two orders of magnitude smaller than those using Ta, Pt, or IrMn, confirming the colossal SHE in BiSb(012). Thus, BiSb(012) is the best candidate for the spin current source in SOT-MRAM and possibly the first industrial application of topological insulators.
机译:在重金属和拓扑绝缘体(TI)中使用自旋霍尔效应(SHE)的自旋轨道转矩(SOT)开关对于超低功耗磁阻随机存取存储器(MRAM)具有巨大的潜力。为了与传统的自旋转移转矩切换竞争,需要具有大自旋霍尔角(θSH> 1)和高电导率(cr> 105 Q-1m1)的纯自旋电流源。但是,到目前为止,没有自旋霍尔材料同时满足这两个条件。重金属(P-Ta,Pt,W)的σσ较高,约为105-106Ω1m1,自旋霍尔角较小(θSH〜0.08-0.4)[1-3],而拓扑绝缘体(TIs)的σSH较大,约为SH〜2-18.8,σ较低〜103-104 Q-1m1 [4,5])。在这里,我们报告了导电TI BiogSbo i(012)薄膜(5-10 nm)中巨大的SHE效应。我们证明,Bio.9Sb0.1(012)薄膜在室温下具有较大的σ〜2.5x105Ω1-m-1和巨大θSH〜52 [6,7]。图1(a)比较了几种重金属和TI的室温θSH,σ和自旋霍尔电导率osh。就σsh而言,BiSb胜过最接近的竞争对手(Pt)30倍,其他TI胜过100倍。图1(b)和1(c)展示了Bi0在100μmx50μm霍尔棒中的SOT开关.9Sb0.1(012)(5 nm)/Mn0.45Ga0.55(3 nm)双层,分别具有±3.5 kOe的面内磁场。 MnGa的SOT转换的中心电流密度为1.5x106 A / cm2,比使用Ta,Pt或IrMn的电流密度小一到两个数量级,这证明BiSb(012)具有巨大的SHE。因此,BiSb(012)是SOT-MRAM中自旋电流源的最佳候选者,并且可能是拓扑绝缘体的第一个工业应用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号