首页> 外文会议>Applications of Evolutionary Computing; Lecture Notes in Computer Science; 4448 >Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization Problems
【24h】

Genetic Algorithms with Elitism-Based Immigrants for Changing Optimization Problems

机译:基于精英的移民的遗传算法用于改变优化问题

获取原文
获取原文并翻译 | 示例

摘要

Addressing dynamic optimization problems has been a challenging task for the genetic algorithm community. Over the years, several approaches have been developed into genetic algorithms to enhance their performance in dynamic environments. One major approach is to maintain the diversity of the population, e.g., via random immigrants. This paper proposes an elitism-based immigrants scheme for genetic algorithms in dynamic environments. In the scheme, the elite from previous generation is used as the base to create immigrants via mutation to replace the worst individuals in the current population. This way, the introduced immigrants are more adapted to the changing environment. This paper also proposes a hybrid scheme that combines the elitismbased immigrants scheme with traditional random immigrants scheme to deal with significant changes. The experimental results show that the proposed elitism-based and hybrid immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
机译:对于遗传算法社区来说,解决动态优化问题一直是一项艰巨的任务。多年来,遗传算法已开发出多种方法来增强其在动态环境中的性能。一种主要方法是例如通过随机移民来维持人口的多样性。本文提出了一种基于精英主义的移民方案,用于动态环境中的遗传算法。在该计划中,前一代的精英被用作通过突变创造移民的基础,以取代当前人口中最贫穷的人。这样,引入的移民更加适应不断变化的环境。本文还提出了一种混合方案,将基于精英主义的移民方案与传统的随机移民方案相结合,以应对重大变化。实验结果表明,提出的基于精英的混合移民方案有效地提高了遗传算法在动态环境中的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号