首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII; Proceedings of SPIE-The International Society for Optical Engineering; vol.6565 >Fast Multi-Scale Regularization and Segmentation of Hyperspectral Imagery via Anisotropic Diffusion and Algebraic Multigrid Solvers
【24h】

Fast Multi-Scale Regularization and Segmentation of Hyperspectral Imagery via Anisotropic Diffusion and Algebraic Multigrid Solvers

机译:通过各向异性扩散和代数多重网格求解器对高光谱图像进行快速多尺度正则化和分割

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an algorithm that generates a scale-space representation of hyperspectral imagery using Algebraic Multigrid (AMG) solvers. The scale-space representation is obtained by solving with AMG a vector-valued anisotropic diffusion equation, with the hyperspectral image as its initial condition. AMG also provides the necessary structure to obtain a hierarchical segmentation of the image. The scale space representation of the hyperspectral image can be segmented in linear time complexity. Results in the paper show that improved segmentation is achieved. The proposed methodology to solve vector PDEs can be used to extend a number of techniques currently being developed for the fast computation of geometric PDEs and its application for the processing of hyperspectral and multispectral imagery.
机译:本文提出了一种使用代数多重网格(AMG)求解器生成高光谱图像的比例空间表示的算法。通过使用AMG求解矢量值的各向异性扩散方程(以高光谱图像为其初始条件)来获得比例空间表示。 AMG还提供了必要的结构以获得图像的分层分割。高光谱图像的比例空间表示可以线性时间复杂度进行分割。本文的结果表明,可以实现改进的分割。所提出的解决矢量PDE的方法可用于扩展当前为几何PDE的快速计算及其在高光谱和多光谱图像处理中的应用而开发的许多技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号