首页> 外文会议>Advanced data mining and applications >JCCM: Joint Cluster Communities on Attribute and Relationship Data in Social Networks
【24h】

JCCM: Joint Cluster Communities on Attribute and Relationship Data in Social Networks

机译:JCCM:社交网络中属性和关系数据的联合集群社区

获取原文
获取原文并翻译 | 示例

摘要

JCCM (Joint Clustering Coefficient Method) algorithm was proposed to identify communities which are cohesive on both attribute and relationship data in social networks. JCCM is a two-step algorithm: In the first step, it clusters tightly cohesive cliques as community cores and we proposed a heuristic method to identify community cores with a probabilistic guarantee to find out all community cores. In the second step, JCCM assigns the community cores and peripheral actors into different communities in a top-down manner resulting in a dendrogram and the final clustering is determined by our objective function, namely Joint Clustering Coefficient (JCC). To consider the power of actors in different roles in community identification, we defined two regimes of communities, namely "union" and "autarchy". Experiments demonstrated that JCCM performs better than existing algorithms and confirmed that attribute and relationship data indeed contain complementary information which helps to identify communities.
机译:提出了JCCM(联合聚类系数法)算法,以识别在社交网络中属性和关系数据上具有凝聚力的社区。 JCCM是一个分为两步的算法:第一步,它将紧密凝聚的集团整合为社区核心,我们提出了一种启发式方法来识别社区核心,并通过概率保证找出所有社区核心。在第二步中,JCCM以自顶向下的方式将社区核心和外围参与者分配到不同的社区中,从而形成树状图,最终的聚类由我们的目标功能即联合聚类系数(JCC)确定。为了考虑参与者在社区认同中扮演不同角色的力量,我们定义了两种社区制度,即“联盟”和“专制”。实验表明,JCCM的性能优于现有算法,并确认属性和关系数据确实包含有助于识别社区的补充信息。

著录项

  • 来源
  • 会议地点 Beijing(CN);Beijing(CN)
  • 作者单位

    State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,100876 Beijing EBUPT Information Technology Co., Ltd,100083 Beijing;

    State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,100876 Beijing EBUPT Information Technology Co., Ltd,100083 Beijing;

    State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,100876 Beijing EBUPT Information Technology Co., Ltd,100083 Beijing;

    State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,100876 Beijing EBUPT Information Technology Co., Ltd,100083 Beijing;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP311.13;
  • 关键词

    graph clustering; community identification; social network;

    机译:图聚类社区识别;社交网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号