首页> 外文会议>ACM international conference on multimedia >Stochastic Resource Prediction and Admission for Interactive Sessions on Multimedia Servers
【24h】

Stochastic Resource Prediction and Admission for Interactive Sessions on Multimedia Servers

机译:多媒体服务器上交互式会话的随机资源预测和准入

获取原文

摘要

In highly interactive multimedia applications startup latency is significant, and may negatively impact performance and Quality of Service (QoS). To avoid this, our approach is to admit whole multimedia sessios instead of single media streams. For the prediction of the varying resource demands within a session, which are mainly correlated to user behavior, we model user behavior as Continuous Time Markov Chains (CTMCs) In this paper, we preopose a mathematical analysis of the CTMC model. This allows to anticipate possible overload and in turn to plan an admission control policy. As a result, our approach provides better control on the tradeoff between server utilization and QoS. Simulation studies confirm this capability.
机译:在高度交互的多媒体应用程序中,启动等待时间很长,可能会对性能和服务质量(QoS)产生负面影响。为避免这种情况,我们的方法是允许整个多媒体会话而不是单个媒体流。为了预测会话中变化的资源需求,这些资源需求主要与用户行为相关,我们将用户行为建模为连续时间马尔可夫链(CTMC)。在本文中,我们对CTMC模型进行了数学分析。这样可以预料可能的过载,进而规划准入控制策略。结果,我们的方法可以更好地控制服务器利用率和QoS之间的折衷。仿真研究证实了这种能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号