首页> 外文会议>Abstracts IEEE International Conference on Plasma Science >Computational speed up techniques for particle-in-cell-Monte Carlo collision simulations of an ion engine discharge chamber
【24h】

Computational speed up techniques for particle-in-cell-Monte Carlo collision simulations of an ion engine discharge chamber

机译:离子发动机放电室的粒子内蒙特卡罗碰撞模拟的计算加速技术

获取原文

摘要

Next generation ion thrusters such as NASA's Evolutionary Xenon Thruster (NEXT) are being considered for in-space propulsion applications to meet the future space mission needs of travel to asteroids and for satellite maneuvers. NASA has been actively pursuing new designs of ion thrusters to address the high power and high-thrust propulsion needs. Computational simulations of ion engine discharge chamber plasmas will help to understand the operation and performance of these high power ion thrusters. In this work, we describe a two-dimensional Particle-in-cell Monte Carlo Collision (PIC-MCC) model developed to simulate the ion engine discharge chamber plasma processes. We utilize VSimPD, a simulation package for plasma discharges based on the Vorpal computing engine. In this model, the electrons, singly charged xenon ions, doubly charged xenon ions and xenon neutrals are tracked as kinetic particles which includes the effects of both electric and magnetic fields. Also, the model solves the electric fields every time step based on the charge particle distributions. This detailed PIC-MCC model was benchmarked on NASA's NEXT ion engine discharge chamber and the simulation results are in good agreement with experimental plasma measurements. Recently we have focused on improving the numerical algorithms in VSimPD to speed up this discharge chamber model. New particle splitting and merging procedures are implemented. These procedures preserve the charge, energy, momentum and also the electron energy distribution functions (EEDF). We will discuss these numerical algorithms and compare the accuracies of these simulation results and provide speed up results. In addition, we will also provide speed up results from the parallel processing option and the convergence procedures developed with the numerical parameters considered in these simulations.
机译:正在考虑将诸如NASA的进化型氙气推进器(NEXT)之类的下一代离子推进器用于太空推进应用,以满足未来前往小行星和卫星机动的太空任务需求。 NASA一直在积极寻求离子推力器的新设计,以满足高功率和高推力的推进需求。离子发动机放电室等离子体的计算仿真将有助于了解这些大功率离子推进器的操作和性能。在这项工作中,我们描述了二维的单元格内蒙特卡洛碰撞(PIC-MCC)模型,该模型用于模拟离子发动机放电室的等离子体过程。我们利用VSimPD,这是一种基于Vorpal计算引擎的等离子体放电仿真程序包。在此模型中,电子,单电荷的氙离子,双电荷的氙离子和氙中性粒子被追踪为动力学粒子,其中包括电场和磁场的影响。而且,该模型根据电荷粒子的分布在每个时间步上求解电场。该详细的PIC-MCC模型在NASA的NEXT离子发动机放电室中进行了基准测试,仿真结果与实验等离子体测量值非常吻合。最近,我们专注于改进VSimPD中的数值算法,以加快此放电室模型的速度。新的粒子拆分和合并程序得以实施。这些程序保留了电荷,能量,动量以及电子能量分布函数(EEDF)。我们将讨论这些数值算法,并比较这些模拟结果的准确性并提供加速结果。此外,我们还将通过并行处理选项以及使用这些模拟中考虑的数值参数开发的收敛程序来提供加速结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号