首页> 外文会议>22nd conference on computational natural language learning >Embedded-State Latent Conditional Random Fields for Sequence Labeling
【24h】

Embedded-State Latent Conditional Random Fields for Sequence Labeling

机译:用于序列标记的嵌入状态潜在条件随机字段

获取原文
获取原文并翻译 | 示例

摘要

Complex textual information extraction tasks are often posed as sequence labeling or shallow parsing, where fields are extracted using local labels made consistent through probabilistic inference in a graphical model with constrained transitions. Recently, it has become common to locally parametrize these models using rich features extracted by recurrent neural networks (such as LSTM), while enforcing consistent outputs through a simple linear-chain model, representing Marko-vian dependencies between successive labels. However, the simple graphical model structure belies the often complex non-local constraints between output labels. For example, many fields, such as a first name, can only occur a fixed number of times, or in the presence of other fields. While RNNs have provided increasingly powerful context-aware local features for sequence tagging, they have yet to be integrated with a global graphical model of similar expressivity in the output distribution. Our model goes beyond the linear chain CRF to incorporate multiple hidden states per output label, but parametrizes their transitions parsimoniously with low-rank log-potential scoring matrices, effectively learning an embedding space for hidden states. This augmented latent space of inference variables complements the rich feature representation of the RNN, and allows exact global inference obeying complex, learned non-local output constraints. We experiment with several datasets and show that the model outperforms baseline CRF+RNN models when global output constraints are necessary at inference-time, and explore the interpretable latent structure.
机译:复杂的文本信息提取任务通常以序列标签或浅层解析的形式提出,其中使用通过局部约束通过图形化模型中的概率推断而保持一致的局部标签来提取字段。最近,使用递归神经网络(例如LSTM)提取的丰富特征对这些模型进行局部参数化,同时通过一个简单的线性链模型(表示连续标签之间的马尔可维依赖性)强制执行一致的输出,已成为普遍现象。但是,简单的图形模型结构掩盖了输出标签之间通常很复杂的非局部约束。例如,许多字段(例如名字)只能出现固定的次数,或者存在其他字段。尽管RNN为序列标记提供了越来越强大的上下文感知本地功能,但它们尚未与输出分布中具有类似表达能力的全局图形模型集成在一起。我们的模型超出了线性链CRF的范畴,每个输出标签都包含多个隐藏状态,但是使用低秩对数潜力评分矩阵对它们的转换进行了参数化,从而有效地了解了隐藏状态的嵌入空间。推理变量的这种增加的潜在空间补充了RNN的丰富功能表示,并允许服从复杂的,学习的非局部输出约束的精确全局推理。我们对多个数据集进行了实验,结果表明当在推理时需要全局输出约束时,该模型的性能优于基线CRF + RNN模型,并探索了可解释的潜在结构。

著录项

  • 来源
  • 会议地点 Brussels(BE)
  • 作者单位

    College of Information and Computer Sciences University of Massachusetts Amherst;

    College of Information and Computer Sciences University of Massachusetts Amherst;

    College of Information and Computer Sciences University of Massachusetts Amherst;

    College of Information and Computer Sciences University of Massachusetts Amherst;

    College of Information and Computer Sciences University of Massachusetts Amherst;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号