首页> 外文会议>2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference >Traffic flow prediction with big data: A learning approach based on SIS-complex networks
【24h】

Traffic flow prediction with big data: A learning approach based on SIS-complex networks

机译:大数据流量预测:一种基于SIS复杂网络的学习方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a susceptible-infected-susceptible complex networks (SIS-Complex Networks) model by the combination between SIS epidemic model and complex networks theory to predict the network traffic flow. It generalizes the SIS theory to the whole traffic network system. In order to establish it, we firstly obtain the traffic structure information from the OpenStreetMap and utilize the web spider to collect real-time traffic data. Then, in terms of the SIS-Complex networks model, we provide the quantitative description of congestion propagation between traffic structure and to predict the network traffic flow. Simulation results which show that the method proposed by this paper can successfully fit and predict the traffic flow are provided as well.
机译:本文结合SIS流行病模型和复杂网络理论,提出了一种易感染易感复杂网络模型(SIS-Complex Networks),以预测网络流量。它将SIS理论推广到整个交通网络系统。为了建立它,我们首先从OpenStreetMap获得交通结构信息,并利用网络蜘蛛来收集实时交通数据。然后,根据SIS-Complex网络模型,我们对流量结构之间的拥塞传播进行了定量描述,并预测了网络流量。仿真结果表明本文提出的方法能够成功拟合和预测交通流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号