首页> 外文会议>2008 American Water Works Association annual conference amp; exposition (ACE08) >Design Energy Efficient Membrane Facilities: Optimization of Energy Consumption for Membrane Desalination Systems
【24h】

Design Energy Efficient Membrane Facilities: Optimization of Energy Consumption for Membrane Desalination Systems

机译:设计节能的膜设施:膜脱盐系统的能耗优化

获取原文
获取原文并翻译 | 示例

摘要

An important consideration during membrane treatment plant design is the projected energyrnconsumption that will result from the selected process and system configuration. Minimizingrnenergy consumption can have a significant impact to the overall operations and maintenancern(O&M) costs of a new facility. Membrane desalination processes require high feed waterrnpressure to overcome osmotic pressure, induce meaningful permeate flow and accomplish saltrnwater separation. The energy requirement for a desalination facility is a composite value of rawrnwater pumping, pre-treatment losses, high pressure pumping, post-treatment losses, permeaternpumping and auxiliary needs. In each application category, the system configuration is different,rnand therefore, there is a somewhat different approach to optimization of power consumption.rnNanofiltration systems operate at higher recovery rates in the range of 80 – 90%, and therefore,rnare configured in either two or three stage units. Frequently an interstage booster pump is appliedrnto equilibrate flux rate at subsequent stages. Brackish units operate at recovery rate of 70 – 85%rnand are frequently arranged as two stage systems. Interstage boosters are used only for brackishrnapplications with very high feed salinity. Seawater systems typically operate at a recovery raternaround 50%, mostly in a single stage configuration. Feed pressure in nanofiltration systems is inrnthe range of 7 – 14 bar (100 – 200 psi). Brackish systems operate at higher feed pressures of 14 –rn28 bar (200 – 400 psi). Seawater RO process systems can require feed pressures of 45 – 70 barrn(650 – 1000 psi). In RO processes the permeate stream leaves the RO unit at close tornatmospheric pressure. The pressure of the concentrate stream is reduced from the feed pressurernvalue by pressure losses in the subsequent stages. Some of the energy of concentrate stream canrnbe recovered using energy recovery devices.rnFeasibility of energy recovery device applications depends on flow rate and pressure of thernconcentrate stream. This paper will describe common and more advanced solutions forrnoptimization of energy consumption in NF/RO systems, either through configuration of thernNF/RO systems or by incorporation of energy recovery devices. Features of various types ofrncommercial energy recovery equipment will be discussed. Energy saving examples will bernprovided utilizing actual installations for each type of application.
机译:膜处理厂设计过程中的重要考虑因素是预计的能耗,这将由所选的工艺和系统配置引起。最小化能源消耗会对新工厂的整体运营和维护成本产生重大影响。膜脱盐过程需要较高的进水压力以克服渗透压,诱导有意义的渗透流并完成盐水分离。海水淡化设施的能源需求是原水泵送,预处理损失,高压泵送,后处理损失,渗透泵和辅助需求的综合值。在每种应用类别中,系统配置都不相同,因此,优化功耗的方法也有所不同。纳滤系统的回收率较高,在80%至90%的范围内,因此,两种配置或三级单元。通常在随后的阶段使用级间增压泵来平衡流量。苦咸装置的回收率为70 – 85%,并且经常布置为两级系统。级间助推器仅用于饲料含盐量很高的微咸应用。海水系统通常以约50%的回收率运行,大多数情况下采用单级配置。纳滤系统中的进料压力为7 – 14 bar(100 – 200 psi)。咸淡系统在14 –rn28 bar(200 – 400 psi)的较高进料压力下运行。海水反渗透工艺系统可能需要45 – 70 barrn(650 – 1000 psi)的进料压力。在反渗透过程中,渗透物流在接近大气压的压力下离开反渗透装置。在随后的阶段中,精料流的压力通过压力损失而从进料压力值降低。浓缩液流的一些能量可以使用能量回收装置回收。能量回收装置应用的可行性取决于浓缩液流的流速和压力。本文将介绍通过NF / RO系统的配置或结合能量回收设备来优化NF / RO系统能耗的通用和更高级的解决方案。将讨论各种类型的商业能源回收设备的特征。将针对每种类型的应用程序通过实际安装来提供节能示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号