首页> 外文会议>13th International Forum on Electrolysis in the Chemical Industry, Nov 7-11, 1999, Clearwater Beach, Florida >Design Methods for PEM Fuel Cells Influence of operating pressure on cell design
【24h】

Design Methods for PEM Fuel Cells Influence of operating pressure on cell design

机译:PEM燃料电池的设计方法工作压力对电池设计的影响

获取原文
获取原文并翻译 | 示例

摘要

The work presented in this paper examines the relationship between cathode air pressure and proton exchange membrane (PEM) fuel cell design. As with most engineering problems, compromise has to be made between conflicting criteria in order to achieve a satisfactory result. For a PEM fuel cell system with a high temperature fuel processor, greater electrical efficiency can be achieved with a high air pressure than with a low air pressure. This is because energy in the flue gases can be utilised in the expander to provide power for the compressor. A typical optimised system should be able to achieve an efficiency of > 40%. For systems without an expander, the parasitic losses associated with the compressor can become unacceptable as the pressure increases, therefore the system efficiency can be greater at low air pressure. For a given cell voltage, the operating pressure influences the distribution of the waste heat between the stack cooling system and the thermal energy emitted in the cathode exhaust. At high-pressure, more heat is generated in the stack than at low pressure, where more heat is transmitted out through the cathode exhaust. Therefore, although the cell performance is higher at high pressures the cooling system needs to be larger. For operation below 1.5 bara it is possible to provide all of the cooling requirements through evaporative cooling by injecting water into the cathode air stream (and/or anode fuel stream). By controlling the pressure drop down the flow channel it is possible to control the water evaporation rate by keeping the relative humidity at 100%. Thus, as the pressure drops, the mass of water in the vapour phase increases and the cooling effect is distributed over the entire cell. Obviously this needs to be achieved without flooding the electrodes.
机译:本文介绍的工作检查了阴极气压与质子交换膜(PEM)燃料电池设计之间的关系。与大多数工程问题一样,必须在相互矛盾的标准之间进行折衷才能获得满意的结果。对于具有高温燃料处理器的PEM燃料电池系统,与低气压相比,高气压可以实现更高的电效率。这是因为烟道气中的能量可以在膨胀机中利用,从而为压缩机提供动力。一个典型的优化系统应该能够实现> 40%的效率。对于没有膨胀器的系统,随着压力的增加,与压缩机相关的寄生损失会变得不可接受,因此在低气压下系统效率会更高。对于给定的电池电压,工作压力会影响废热在电池组冷却系统之间的分布以及在阴极废气中释放的热能。在高压下,电池堆中产生的热量要比低压下更多,因为在低压下,更多的热量通过阴极废气传出。因此,尽管在高压下电池性能更高,但冷却系统仍需要更大。对于低于1.5 bara的运行,可以通过将水注入阴极空气流(和/或阳极燃料流)中的蒸发冷却来提供所有冷却要求。通过控制流道的压降,可以通过将相对湿度保持在100%来控制水的蒸发速率。因此,随着压力下降,气相中的水质量增加并且冷却效果分布在整个电池上。显然,这需要在不淹没电极的情况下实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号