首页> 中国专利> 一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法

一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法

摘要

本发明公开了一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米H‑Beta沸石的方法,涉及H‑Beta沸石及提取钾盐技术领域,在类固相体系内,以酸蒸汽解聚天然伊利石黏土,在获得具有高活性硅,铝物种的同时,提取其富含的钾元素,并以解聚天然伊利石黏土产生的活性硅、铝物种为合成原料,在添加少量有机模板剂的情况下,采用变温晶化技术,制备具有整体式多级孔结构的纳米H‑Beta沸石。本发明方法避免了因固液分离以及离子交换过程导致的合成产率低,污染排放量大的问题,得益于解聚天然伊利石黏土形成的活性硅、铝物种具有较高化学活性和两段变温合成技术,在较低有机模板剂使用量的情况下,仍具有较高的晶化速度,提升了H‑Beta沸石的合成效率。

著录项

  • 公开/公告号CN114920261A

    专利类型发明专利

  • 公开/公告日2022-08-19

    原文格式PDF

  • 申请/专利权人 延边大学;

    申请/专利号CN202210670135.3

  • 申请日2022-06-14

  • 分类号C01B39/04(2006.01);B82Y30/00(2011.01);

  • 代理机构长春吉大专利代理有限责任公司 22201;

  • 代理人刘世纯

  • 地址 133000 吉林省延边朝鲜族自治州公园路977号

  • 入库时间 2023-06-19 16:26:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-02-10

    授权

    发明专利权授予

  • 2022-11-29

    著录事项变更 IPC(主分类):C01B39/04 专利申请号:2022106701353 变更事项:发明人 变更前:姜男哲历新宇韩顺玉孟万许景哲 变更后:历新宇姜男哲韩顺玉孟万许景哲

    著录事项变更

  • 2022-09-06

    实质审查的生效 IPC(主分类):C01B39/04 专利申请号:2022106701353 申请日:20220614

    实质审查的生效

说明书

技术领域

本发明涉及H-Beta沸石及提取钾盐技术领域,特别涉及一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-beta沸石的方法

背景技术

Beta沸石分子筛具有含三维12元环孔道的BEA拓扑结构,在石油化工和精细化学制造领域具有广泛的应用。自1967年,美国Mobil公司首次在水热条件下,以四乙基氢氧化铵为模板首次合成Beta沸石以来,时至今日,工业上一直沿用该工艺用于大宗制备Beta沸石分子筛催化剂。然而,这种合成方法在绿色可持续发展方面具有一定的缺陷,如使用的合成原料多采用高纯度化学硅、铝药品和有机模板剂(四乙基氢氧化铵)的高使用量导致的合成成本高昂问题,以及水热合成体系制备过程中导致的Beta沸石分子筛产率低、废水排放高等问题。此外,在合成Beta沸石分子筛过程中,一般需要向合成体系中引入Na

现有技术公开了一种利用中性聚合物导向制备梯级孔Beta分子筛的绿色合成方法,该发明选择以不含氮的聚缩酮为模板剂,在含有Na

现有技术还公开了一种利用高岭土微球原位晶化制备Beta沸石的方法,该发明以焙烧过的高岭土为合成主要硅铝源,在额外添加化学硅源调控合成硅铝比的情况下,在含有Na

发明内容

为了解决现有技术中存在的伊利石传统提取钾工艺中需要活化而带来的高能耗问题以及传统纳米Beta沸石分子筛合成过程中合成成本高,合成过程不绿色以及产率低等问题,本发明旨在基于低能耗环境下绿色高附加值的开发伊利石资源,在保持较高的钾元素提取率的基础上,同时也为整体式多级孔纳米H-Beta沸石的合成提供廉价原料和适用于大规模工业化生产的工艺,即一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法。

为解决上述技术问题,本发明采用如下技术方案:

一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法,具体步骤如下:

S1:在类固相体系内,采用酸蒸汽解聚天然伊利石黏土,获得硅铝比可调的活性硅、铝物种;所述硅铝比为SiO

S2:以步骤S1所得的高活性硅、铝物种为合成原料,在添加有机模板剂的条件下,所述有机模板剂为四乙基氢氧化铵(TEAOH)的水溶液,在类固相体系内,采用两段变温晶化技术制备黏土基整体式多级孔纳米H-Beta沸石。

进一步地,所述步骤S1所述类固相体系,是指在水热反应釜的聚四氟乙烯内衬中的物料与溶剂为隔离状态,反应过程仅靠溶剂受热蒸发产生的蒸汽作为反应介质。

进一步地,所述步骤S1具体如下:

S11、将天然伊利石黏土球磨至200目;

S12、将步骤S11的伊利石粉放置于水热反应釜的聚四氟乙烯内衬中,所述伊利石粉与溶剂为隔离状态,在210℃反应9-21h,聚四氟乙烯内衬中溶剂与伊利石粉的液固比为15mL/g;

S13、将反应产物取出,经洗涤、过滤所得固体产物即为硅铝比可调的高活性硅、铝物种。

进一步地,所述步骤S12所述的溶剂为盐酸溶液,浓度为4mol/L。

进一步地,所述步骤S13中过滤所采用的滤液为氯化铝、氯化钾、氯化铁及氯化亚铁的混合液。

进一步地,所述步骤S2中所述的有机模板剂为质量浓度为25%的四乙基氢氧化铵(TEAOH)的水溶液。

进一步地,所述步骤S2具体如下:

S21、将有机模板剂与硅铝比可调的活性硅、铝物种按如下物质摩尔比混合:SiO

S22、将研磨均匀后的混合物放置于水热反应釜的聚四氟乙烯内衬中,在80℃老化18h;待老化完毕后,将温度提升至130℃-150℃,晶化3-9h;

S23、取出水热反应釜,待其温度降低至室温,对合成的固体产物抽滤至中性、烘干处理,所得即为整体式多级孔纳米H-Beta沸石。

进一步地,所述步骤S22中所述的类固相体系,是指在水热反应釜的聚四氟乙烯内衬中的物料与聚四氟乙烯内衬底部为隔离状态,以便于获得完整的整体式结构。

本发明的一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法的反应原理如下:

在类固相体系下,采用酸蒸汽处理天然伊利石黏土,在提取其富含的钾元素的同时,获得具有高活性的活性硅、铝物种,并以其为唯一合成硅、铝原料,在少量有机模板剂(四乙基氢氧化铵,TEAOH,质量浓度为25%的水溶液)的作用下,基于变温晶化技术直接制备整体式多级孔纳米H-Beta沸石,从而在合成来源以及合成工艺上实现了绿色化制备,同时也彻底避免了因合成产物固液分离以及离子交换过程中对合成产物的损失。特别的,由于类固相体系合成过程中,合成物料处于极浓状态,因此所获产物呈现整体式多级孔结构,这进一步增强了其物质扩散性能。综上所述,本发明为工业绿色低成本可持续制备高传质性能的H-Beta沸石提供了新的途径

与现有技术相比,本发明的优点如下:

首先,在合成原料方面,本方法与目前合成Beta沸石分子筛的技术相比更为绿色。在类固相体系内,通过使用酸蒸汽直接解聚天然伊利石黏土获得用于Beta沸石分子筛合成所需的硅、铝物种,可以避免对化学硅铝药品的依赖,实现“硅铝同源”制备Beta沸石分子筛。特别的,通过控制酸蒸汽处理时间,可以调控其硅铝比例。值得指出的是,该方法可以直接避免对天然黏土的高温活化步骤,在高效解聚提取其钾组分的同时,实现节约能源的目的。此外,通过向使用的酸液中适当补充少量酸液,即可实现酸液的多次利用,因而避免了酸液的排放以及钾元素溶液的富集。

其次,由于酸蒸汽解聚天然伊利石黏土获得的高活性硅、铝物种具有较高的反应活性,因此在极少量的有机模板(四乙基氢氧化铵,TEAOH)使用下,即可高效率直接获得纳米H-Beta沸石,实现了合成成本的极大降低。特别的,由于采用了固相合成体系,且使用了变温晶化合成技术,在极浓环境下无Na

附图说明

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。

图1为伊利石原料以及酸蒸汽处理18h后产物的XRD图;

图2为酸蒸汽处理伊利石获得的固体硅铝比组成(摩尔比)变化趋势图;

图3为实施例1-4合成样品的XRD图。

具体实施方式

为清楚、完整地描述本发明所述技术方案及其具体工作过程,结合说明书附图,本发明的具体实施方式如下:

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

本发明采用的原材料伊利石粉的物料组成如下:

实施例1

本实施例提供了一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法,所述方法的具体步骤如下:

(1)在类固相体系内,采用酸蒸汽解聚天然伊利石黏土,获得硅铝比(SiO

1-1、将天然伊利石球磨至200目;

1-2、将伊利石粉放置水热反应釜的聚四氟乙烯内衬中,在210℃反应9h,聚四氟乙烯内衬中溶剂与伊利石粉的液固比为15mL/g;

所述的溶剂为盐酸溶液,浓度为4mol/L;

且水热反应釜的聚四氟乙烯内衬中的伊利石粉与反应溶剂为隔离状态,反应过程仅靠溶剂受热蒸发产生的蒸汽作为反应介质;

1-3、将反应产物取出,经洗涤、过滤所得固体产物即为硅铝比可调的高活性硅、铝物种;滤液为氯化铝、氯化钾,氯化铁,氯化亚铁的混合液;

(2)以步骤(1)所得的高活性硅、铝物种为合成原料,在添加有机模板剂的条件下,所述有机模板剂为质量浓度为25%的四乙基氢氧化铵(TEAOH)的水溶液,在类固相体系内,采用两段变温晶化技术制备黏土基整体式多级孔纳米H-Beta沸石,具体步骤如下:

2-1、将有机模板剂与硅铝比可调的活性硅、铝物种按物质摩尔比:SiO

2-2、将研磨均匀后的混合物放置于水热反应釜的聚四氟乙烯内衬中,在80℃老化18h;待老化完毕后,将温度提升至150℃,晶化9h;

且在水热反应釜的聚四氟乙烯内衬中的物料与聚四氟乙烯内衬底部为隔离状态,以便于获得完整的整体式结构;

2-3、取出水热反应釜,待其温度降低至室温,对合成的固体产物抽滤至中性、烘干处理,所得即为整体式多级孔纳米H-Beta沸石。

实施例2

本实施例提供了一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法,所述方法的具体步骤如下:

(1)在类固相体系内,采用酸蒸汽解聚天然伊利石黏土,获得硅铝比(SiO

1-1、将天然伊利石球磨至200目;

1-2、将伊利石粉放置水热反应釜的聚四氟乙烯内衬中,在210℃反应12h,聚四氟乙烯内衬中溶剂与伊利石粉的液固比为15mL/g;

且水热反应釜的聚四氟乙烯内衬中的伊利石粉与反应溶剂为隔离状态,反应过程仅靠溶剂受热蒸发产生的蒸汽作为反应介质;

1-3、将反应产物取出,经洗涤、过滤所得固体产物即为硅铝比可调的高活性硅、铝物种;滤液为氯化铝、氯化钾,氯化铁,氯化亚铁的混合液;

所述的溶剂为盐酸溶液,浓度为4mol/L;

(2)以步骤(1)所得高活性硅、铝物种为合成原料,在添加有机模板剂的条件下,所述有机模板剂为质量浓度为25%的四乙基氢氧化铵(TEAOH)的水溶液,在类固相体系内,采用两段变温晶化技术制备黏土基整体式多级孔纳米H-Beta沸石,具体步骤如下:

2-1、将有机模板剂与硅铝比可调的活性硅、铝物种按物质摩尔比:SiO

2-2、将研磨均匀后的混合物放置于水热反应釜的聚四氟乙烯内衬中,在80℃老化18h;待老化完毕后,将温度提升至150℃,晶化9h;

且在水热反应釜的聚四氟乙烯内衬中的物料与聚四氟乙烯内衬底部为隔离状态,以便于获得完整的整体式结构;

2-3、取出水热反应釜,待其温度降低至室温,对合成的固体产物抽滤至中性、烘干处理,所得即为整体式多级孔纳米H-Beta沸石。

实施例3

本实施例提供了一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法,所述方法的具体步骤如下:

(1)在类固相体系内,采用酸蒸汽解聚天然伊利石黏土,获得硅铝比(SiO

1-1、将天然伊利石球磨至200目;

1-2、将伊利石粉放置水热反应釜的聚四氟乙烯内衬中,在210℃反应15h,聚四氟乙烯内衬中溶剂与伊利石粉的固液比为15mL/g;

所述的溶剂为盐酸溶液,浓度为4mol/L;

且水热反应釜的聚四氟乙烯内衬中的伊利石粉与反应溶剂为隔离状态,反应过程仅靠溶剂受热蒸发产生的蒸汽作为反应介质;

1-3、将反应产物取出,经洗涤、过滤所得固体产物即为硅铝比可调的高活性硅、铝物种;滤液为氯化铝、氯化钾,氯化铁,氯化亚铁的混合液;

(2)以步骤(1)所得高活性硅、铝物种为合成原料,在添加有机模板剂,所述有机模板剂为质量浓度为25%的四乙基氢氧化铵(TEAOH)的水溶液,在类固相体系内,采用两段变温晶化技术制备黏土基整体式多级孔纳米H-Beta沸石,具体步骤如下:

2-1、将有机模板剂与硅铝比可调的活性硅、铝物种按物质摩尔比:SiO

2-2、将研磨均匀后的混合物放置于水热反应釜的聚四氟乙烯内衬中,在80℃老化18h;待老化完毕后,将温度提升至130℃,晶化3h;

且在水热反应釜的聚四氟乙烯内衬中的物料与聚四氟乙烯内衬底部为隔离状态,以便于获得完整的整体式结构;

2-3、取出水热反应釜,待其温度降低至室温,对合成的固体产物抽滤至中性、烘干处理,所得即为整体式多级孔纳米H-Beta沸石。

实施例4

本实施例提供了一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法,所述方法的具体步骤如下:

(1)在类固相体系内,采用酸蒸汽解聚天然伊利石黏土,获得硅铝比(SiO

1-1、将天然伊利石球磨至200目;

1-2、将伊利石粉放置水热反应釜的聚四氟乙烯内衬中,在210℃反应21h,聚四氟乙烯内衬中溶剂与伊利石粉的固液比为15mL/g;

且水热反应釜的聚四氟乙烯内衬中的伊利石粉与反应溶剂为隔离状态,反应过程仅靠溶剂受热蒸发产生的蒸汽作为反应介质;

1-3、将反应产物取出,经洗涤、过滤所得固体产物即为硅铝比可调的高活性硅、铝物种;滤液为氯化铝、氯化钾,氯化铁,氯化亚铁的混合液;

(2)以步骤(1)所得高活性硅、铝物种为合成原料,在添加有机模板剂,所述有机模板剂为质量浓度为25%的四乙基氢氧化铵(TEAOH)的水溶液,在类固相体系内,采用两段变温晶化技术制备黏土基整体式多级孔纳米H-Beta沸石,具体步骤如下:

2-1、将有机模板剂(四乙基氢氧化铵,TEAOH,质量浓度为25%的水溶液)与硅铝比可调的活性硅、铝物种按物质摩尔比:SiO

2-2、将研磨均匀后的混合物放置于水热反应釜的聚四氟乙烯内衬中,在80℃老化18h;待老化完毕后,将温度提升至150℃,晶化9h;

且在水热反应釜的聚四氟乙烯内衬中的物料与聚四氟乙烯内衬底部为隔离状态,以便于获得完整的整体式结构;

2-3、取出水热反应釜,待其温度降低至室温,对合成的固体产物抽滤至中性、烘干处理,所得即为整体式多级孔纳米H-Beta沸石。

图1为酸蒸汽处理前后的XRD图,从图中可以看出,原料伊利石的晶体结构消失,呈现无定型结构,说明其固有的晶体结构已经完全解聚为适宜沸石合成的活性物种。

图2是改变酸蒸汽时间,通过XRF测试酸洗产物组分绘制的组分中硅铝摩尔比变化趋势图,从图中可以看出,随着反应时间的增加,产物中硅铝比逐渐升高;这是由于BETA沸石的硅铝比是影响其催化性能的重要因素,因此通过图2可知,通过控制反应时间,获得不同硅铝比的原料,进而制备硅铝比不同的BETA沸石。

图3是相应条件下,制备产物的XRD图,由图证明,合成产物为具有高结晶度的beta沸石。

通过实施例1-4的一种利用两段变温晶化技术直接制备伊利石黏土基整体式多级孔纳米H-Beta沸石的方法,可获得如下效果:

为解决伊利石传统提取钾工艺中需要活化而带来的高能耗问题,在类固相体系内,通过使用酸蒸汽直接解聚天然伊利石黏土,在解聚伊利石黏土晶体结构,获得高活性硅、铝前驱体的同时,实现对其富含的钾元素可以高效率的提取;特别的,在酸解伊利石黏土的过程中,使用的酸液不仅可以循环使用,同时也造成钾元素的富集。同时,与碱性环境相比,伊利石在酸性解聚过程中,骨架密度降低的同时,会形成部分与铝元素键合的硅链,可以充当“beta沸石的异质晶种”,并赋予其在合成H-beta沸石分子筛的高化学活性。

为解决传统纳米Beta沸石分子筛合成过程中合成成本高,合成过程不绿色以及产率低等问题,在完全不使用工业硅、铝药品的前提下,以酸蒸汽解聚天然伊利石黏土形成的活性硅、铝物种为原料,采用类固相合成技术,在使用极少量的有机模板(四乙基氢氧化铵,TEAOH,质量浓度为25%的水溶液)的情况下,绿色、高效、直接合成具有整体式多级孔结构的纳米H-Beta沸石分子筛;

为克服传统合成高传质能力的Beta沸石分子筛需引入模板剂或使用如酸、碱处理等手段导致的成本过高,工艺复杂的弊端,提出了在类固相体系内,采用变温晶化合成策略,直接合成了纳米H-Beta沸石。特别的,由于合成前体的在转变过程中处于极浓体系中,以及类固相晶化过程中的技术特性,因此导致合成产物直接具有整体式多级孔结构。

以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号