首页> 中国专利> 一种岩石抗拉强度和单轴抗压强度的原位测定方法

一种岩石抗拉强度和单轴抗压强度的原位测定方法

摘要

本发明公开了一种岩石抗拉强度和单轴抗压强度的原位测定方法,基于金刚石钻头钻进岩石过程的工作原理,结合分析模型,将单轴抗压强度和抗拉强度与钻探参数通过岩石力学参数直接建立联系,分析研究岩石内摩擦角、切削强度比、单轴抗压强度和抗拉强度四者之间的关系,提出了一种估算岩石强度参数的方法。本发明解决了现有岩石力学强度参数试验中存在的制样困难、步骤复杂、误差较大等问题,计算过程简单,在不采用经验修正系数情况下,仍具有较高的计算精度,可直接应用于岩石强度的预测。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-05-20

    公开

    发明专利申请公布

说明书

技术领域

本发明属于地下空间与隧道工程技术领域,涉及一种岩石抗拉强度和单轴抗压强度的原位测定方法。

背景技术

岩石单轴抗压强度、抗拉强度的准确测量是保证工程岩体安全稳定的前提,准确地评价岩体强度特性,在工程设计与施工中具有重要的实践意义。进入21世纪以来,随着国家在基建工程领域重视程度增大,此时工程稳定性问题就变得尤为重要了。而作为影响岩体工程稳定性的抗压强度,长期以来被用于岩体质量评价与分类,抗压强度值通常可用单轴抗压强度试验或者点荷载强度试验两种试验方式获得。单轴抗压强度试验测定岩石强度往往要求精心制备样品,特别是样本的抛光和形状整改,步骤复杂且要求样品完整性良好,费时又费钱;点荷载强度试验与岩石单轴抗压强度试验相比,测试简易方便、速度快、成本低廉、不需专门的试样制备,但是点荷载强度测试方法的经验公式存在一定局限性,获得的岩石抗压强度往往存在较大误差。另一方面,岩石抗拉强度作为衡量岩石性能的一个重要的力学指标,通过直接拉伸试验、巴西劈裂试验、三点或四点弯曲拉伸试验、空心岩柱试验等方式测定岩石抗拉强度也存在制样难度大、步骤复杂、时间和经济成本高的问题。以上方法获得原位岩石的信息有限,不能准确地反映野外岩石的特性,难以准确评估复杂的野外条件下的岩石强度特性。

数字钻技术作为一种新方法,可用于测试岩石的强度参数。该方法具有连续测量、无需采样和操作简单等特点,可以通过监测仪记录的钻进参数,对现场岩石进行强度评估。近50年来,研究人员基于钻头钻进过程的力平衡和能量平衡,提出各种分析模型,旨在不断地提高数字钻技术对岩石强度参数的预测精度。研究者们基于力平衡分析模型,建立了岩石破碎区的钻进数据和岩石之间的关系,并开发了一种使用T形刮刀钻头的分析模型,用于估算岩石强度参数。还有研究者基于能量平衡的分析模型,建立岩石的能量比和单轴抗压强度之间的线性关系,以解决钻进时岩石破碎区的问题。然而,岩石抗拉强度与钻进参数的关系鲜有人研究,单轴抗压强度和钻进数据之间存在显式关系,迄今为止也主要是经验的。

发明内容

本发明的目的是提供一种岩石抗拉强度和单轴抗压强度的原位测定方法,基于金刚石钻头钻进岩石过程的工作原理,结合分析模型,将单轴抗压强度和抗拉强度与钻探参数通过岩石力学参数直接建立联系,分析研究岩石内摩擦角、切削强度比、单轴抗压强度和抗拉强度四者之间的关系,提出了一种估算岩石强度参数的方法。

本发明所采用的技术方案是,一种岩石抗拉强度和单轴抗压强度的原位测定方法,具体按照以下步骤实施:

步骤1、基于钻头的受力特点,根据力学极限平衡原理,建立钻头钻进过程的力学分析模型;

步骤2、对多种岩性的岩石进行数字钻试验,在相应的钻速和转速条件下,得到金刚石钻头侵入各类岩石所需的推进力和扭矩力;

步骤3、将步骤2得到的推进力和扭矩力进行线性拟合,结合推力和扭矩力之间存在的线性相关性,求出数字钻试验下岩石的内摩擦角;

步骤4、利用步骤3获得的岩石内摩擦角代入岩石切削强度比公式,建立岩石切削强度比分别与单轴抗压强度、抗拉强度之间的关系,实现岩石抗拉强度和单轴抗压强度的预测。

本发明的特点还在于,

步骤1中,推力F

F

式(1)-(2)中:

式(3)-(4)中:σ

式(5)中:C为岩石的粘聚力,

式(6)中:θ为接触摩擦角;

将式(3)和式(5)代入式(6),求得极限切削力F

钻头的几何参数a=5°。

步骤2具体为,数字钻系统通过控制钻进速率v和转速w,实时监测并记录钻头钻入岩石各阶段的推力F

步骤3具体为,F

碎屑岩在钻进过程中的摩擦角系数计算为:

碎屑岩破碎区的摩擦角

根据式(9)和式(10),完整岩石内摩擦角计算为:

步骤4具体为,岩石的破坏是由钻头钻进过程的切削力达到极限引起的,因此,引入参数S

基于Mohr-Coulomb准则,岩石的无侧限抗压强度σ

于是,岩石切削强度比计算为:

将试验测得的多种岩性岩石的抗拉强度与岩石切削强度比线性拟合,得到岩石抗拉强度与岩石切削强度比的线性关系式,由该线性关系式即可预测得出任一岩石切削强度比对应的岩石抗拉强度;

将试验测得的多种岩性岩石的单轴抗压强度与岩石切削强度比线性拟合,得到岩石单轴抗压强度与岩石切削强度比的线性关系式,由该线性关系式即可预测得出任一岩石切削强度比对应的岩石单轴抗压强度。

本发明的有益效果是:

本发明一种岩石抗拉强度和单轴抗压强度的原位测定方法,在数字钻进技术的基础上,根据金刚石钻头钻进岩石过程的工作原理,提出钻头钻进时的分析模型,基于分析模型,提出一种有效预测岩石内摩擦角的判据并提出切削强度比的概念,通过分析岩石内摩擦角、切削强度比、单轴抗压强度及抗拉强度四者的关系确定岩石抗拉强度和单轴抗压强度;本发明的原位测定方法解决了现有岩石力学强度参数试验中存在的制样困难、步骤复杂、误差较大等问题,计算过程简单,在不采用经验修正系数情况下,仍具有较高的计算精度,可直接应用于岩石强度的预测;简单快捷,节约成本,精确度高,应用前景广阔。

附图说明

图1是金刚石钻头钻进岩石过程的力学分析模型示意图;

图2是数字钻试验四种岩石所需推力F

图3是岩石强度与切削强度比关系图,其中,图3(a)是岩石抗拉强度与切削强度比关系图,图3(b)是岩石单轴抗压强度与切削强度比关系图;

图4是岩石强度预测值与室内试验实测值对比分析图,其中,图4(a)是岩石单轴抗压强度与与室内试验实测值对比分析图,图4(b)是岩石抗拉强度与与室内试验实测值对比分析图。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

实施例

通过室内试验得到砂岩、大理岩、页岩和闪长岩的单轴抗压强度、抗拉强度和内摩擦角。

本实施例提供一种岩石抗拉强度和单轴抗压强度的原位测定方法,具体按照以下步骤实施:

步骤1、基于钻头的受力特点,根据力学极限平衡原理,建立钻头钻进过程的力学分析模型;

如图1所示,岩石在螺旋面钻进的过程分为切削阶段和摩擦阶段,在切削阶段,垂直于轴向运动的扭矩力只切削岩石;在摩擦阶段,压痕随钻头轴向推进而变化,包括压痕、破碎和粉碎。在这两个阶段,推力和扭矩力在执行钻进过程中起着重要作用,并且在连续快速的过程中同时发生;

步骤1中,推力F

F

式(1)-(2)中:

式(3)-(4)中:σ

式(5)中:C为岩石的粘聚力,

式(6)中:θ为接触摩擦角;

将式(3)和式(5)代入式(6),求得极限切削力F

步骤2、对砂岩、大理岩、页岩和闪长岩进行数字钻试验,数字钻系统通过控制钻进速率v和转速w,实时监测并记录钻头钻入岩石各阶段的推力F

步骤3、随着钻头侵入岩石的深度不断增大,钻头的推力F

步骤3具体为,F

碎屑岩在钻进过程中的摩擦角系数计算为:

碎屑岩破碎区的摩擦角

根据式(9)和式(10),完整岩石内摩擦角计算为:

由式(11)获得数字钻试验下大理石、砂岩、页岩和闪长岩的内摩擦角,分别为33.6°、41.9°、43.6°和50.8°。四种岩石的误差介于1.2-3.5%,均小于10%,说明通过钻试验获得的岩石内摩擦角值准确性高。

通过比较室内试验和钻试验的岩石内摩擦角,验证分析模型的可靠性,如表1所示,

表1数字钻试验和室内试验的岩石内摩擦角误差分析

根据表1可知,室内试验和本实施例数字钻试验的岩石内摩擦角误差小于4%,因此,本实施例钻头钻进过程的力学分析模型可靠性高。

步骤4、利用步骤3获得的岩石内摩擦角代入岩石切削强度比公式,建立岩石切削强度比分别与单轴抗压强度、抗拉强度之间的关系,实现岩石抗拉强度和单轴抗压强度的预测;

步骤4具体为,岩石的破坏是由钻头钻进过程的切削力达到极限引起的,因此,引入参数S

基于Mohr-Coulomb准则,岩石的无侧限抗压强度σc计算为:

于是,岩石切削强度比计算为:

如图3(a)所示,将试验测得的多种岩性岩石的抗拉强度与岩石切削强度比线性拟合,得到岩石抗拉强度与岩石切削强度比的线性关系式,由该线性关系式即可预测得出任一岩石切削强度比对应的岩石抗拉强度;

如图3(b)所示,将试验测得的多种岩性岩石的单轴抗压强度与岩石切削强度比线性拟合,得到岩石单轴抗压强度与岩石切削强度比的线性关系式,由该线性关系式即可预测得出任一岩石切削强度比对应的岩石单轴抗压强度。

为验证本实施例的原位测定方法的正确性与合理性,通过其他研究人员测定的岩石强度参数,见表2和表3,与本实施例得到对应的岩石抗拉强度、岩石单轴抗压强度见表4和表5进行对比验证。

表2岩石基本物理力学性质参数(1)

表3岩石基本物理力学性质参数(2)

表4岩石抗拉强度预测值及误差

表5岩石单轴抗压强度预测值及误差

将表3与表5的岩石单轴抗压强度值进行对比如图4(a)所示,将表2与表4的岩石抗拉强度值进行对比如图4(b)所示,根据图4(a)-(b)可以看出,不同岩石的强度预测值存在差异,岩石的抗拉及抗压强度随岩石内摩擦角的增大而增大,且预测强度也随岩石内摩擦角的增大而增大。

表6强度预测准确度指标

根据如表6所示的岩石强度预测准确度指标,结合表4、表5可知,岩石抗拉强度的钻试验预测值与室内试验测定值误差介于3.07%-28.11%之间,平均值为12.29%;岩石单轴抗压强度钻试验预测值与室内试验测定值误差介于1.01%-35.08%之间,平均值为20.44%。本发明提出的岩石强度预测方法针对岩石抗拉强度预测较为准确,误差控制在20%以内;对各岩石单轴抗压强度预测的平均误差略超过20%,整体上,该方法能够通过分析岩石内摩擦角、切削强度比、单轴抗压强度及抗拉强度四者的关系对岩石强度进行合理预测具有较高的计算精度。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号