首页> 外文OA文献 >The Magmatic and Hydrothermal Evolution of the Ertsberg Intrusion in the Gunung Bijih (Ertsberg) Mining District, West Papua, Indonesia
【2h】

The Magmatic and Hydrothermal Evolution of the Ertsberg Intrusion in the Gunung Bijih (Ertsberg) Mining District, West Papua, Indonesia

机译:印度尼西亚西巴布亚Gunung Bijih(Ertsberg)矿区Ertsberg侵入岩的岩浆和热液演化

摘要

The Ertsberg Intrusion (EI) is located approximately 1.5 km southeast of the Grasberg super-porphyry Cu-Au deposit (GIC), in the Gunung Bijih (Ertsberg) Mining District, West Papua, Indonesia. Intrusion- and carbonate-hosted mineralization is associated with the 3.28-2.97±0.54 Ma multi-phase intrusive complex. The orientation of the intrusion-hosted mineralized zone is parallel to the direction of porphyry dike emplacement in the intrusive complex and to regional structures. Potassic, phyllic, propylitic and endoskarn alteration types are recognized in the EI, distributed over 7 vein types. Three vein stages initiate pre-porphyry dike emplacement, and mineralization occurs pre- and post-dike emplacement. Cu-Au mineralization is associated with pre-dike biotite-bornite-anhydrite veinlets (Stage III), and post-dike quartz-anhydrite-bornite+chalcopyrite//green sericite veins (Stage V), and quartz-anhydrite-chalcopyrite-pyrite//white sericite veins (Stage VI). Sulfides associated with each alteration type in the EI have d³⁴S values that range between -3.0 to 3.6‰. Sulfate d³⁴S between alteration types are variable: potassic (9.6- 11.1‰) and hydrolytic (10.2-16.6 ‰). The bulk isotopic sulfur (d³⁴S(SS)) composition for fluid in equilibrium Stage III veins is 7.5‰, which is higher than would expected for an oxidized calc-alkaline fluid, thus I invoke the addition of heavy sulfur from the sedimentary anhydrite nodules in adjacent carbonate host rocks. There is an overall decrease in bulk isotopic sulfur (d³⁴S(SS)) composition for hydrothermal fluid throughout the span of hydrothermal activity. A degassing mafic magma chamber at depth, and/or the leaching of previously deposited sulfides are likely responsible for this decrease. Sulfide-sulfate equilibrium temperatures for potassic alteration in the EI average 574°C, approximately 125°C cooler than sulfide-sulfate equilibrium temperatures in the GIC. Calculated oxygen isotopic compositions for water in equilibrium with anhydrite from early potassic veins in both the Ertsberg Stockwork Zone and GIC suggest this component was derived from a non-magmatic source; the sedimentary anhydrite nodules are a probable source. The calculated oxygen and hydrogen isotopic compositions for water in equilibrium sericite from intermediate veins in the ESZ and GIC show the fluid was derived from a magmatic water and/or magmatic vapor; however, the water responsible for late hydrolytic alteration in both intrusive centers provides evidence for mixing of magmatic water (vapor) with meteoric water. Mass balance calculations using the EI volume estimate, and the known mineralization associated with the EI show that the EI has an insufficient volume of H₂O to account for the known volume of hydrothermal alteration and mineralization. Coupled with sulfur, oxygen and hydrogen isotope data, and Re-Os isotope source data, this suggests additional input of hydrothermal fluids from deeper magmatic and sedimentary sources, with moderate addition of meteoric water into the hydrothermal system during Stage VI vein formation.
机译:Ertsberg Intrusion(EI)位于印度尼西亚西巴布亚Gunung Bijih(Ertsberg)矿区的Grasberg超级斑岩Cu-Au矿床(GIC)东南约1.5公里处。侵入岩和碳酸盐岩带动的矿化与3.28-2.97±0.54 Ma多相侵入复合体有关。侵入岩带矿化带的方向与侵入岩体中斑岩堤的定位方向和区域结构平行。 EI中识别出钾,叶酸,丙酸和内叶矽卡素的变化类型,分布在7种静脉类型上。三个脉动阶段启动了斑岩前堤防定位,矿化发生在堤防前后。 Cu-Au矿化与白云母前黑云母-堇青石-硬石膏小脉(阶段III),后白云母石英-硬石膏-钙钛矿+黄铜矿//绿绢云母脉(阶段V)和石英-硬石膏-黄铜矿-黄铁矿相关//白色绢云母脉(阶段VI)。 EI中与每种蚀变类型相关的硫化物的d³S值在-3.0至3.6‰之间。蚀变类型之间的硫酸盐d³⁴S是可变的:钾(9.6-11.1‰)和水解(10.2-16.6‰)。平衡阶段III脉中流体的总同位素硫(d³S(SS))组成为7.5‰,比氧化的钙碱性流体的预期要高,因此我呼吁从沉积的硬石膏结节中添加重硫。邻近的碳酸盐岩。在整个热液活动过程中,热液的总同位素硫(d³S(SS))成分总体上减少了。深度上的镁铁质岩浆室脱气和/或先前沉积的硫化物的浸出可能是造成这种下降的原因。在EI平均值574°C下用于钾离子变化的硫化物-硫酸盐平衡温度,比GIC中的硫化物-硫酸盐平衡温度低约125°C。在Ertsberg储油区和GIC的早期钾盐脉中,与硬石膏平衡的水的氧同位素组成的计算值表明,该成分来自非岩浆来源。沉积的硬石膏结核是可能的来源。从ESZ和GIC中的中间脉动计算出的平衡绢云母中水的氧和氢同位素组成,表明该流体是从岩浆水和/或岩浆蒸气中提取的。然而,在两个侵入中心造成后期水解改变的水为岩浆水(蒸气)与陨石水的混合提供了证据。使用EI量估算值进行的质量平衡计算以及与EI相关的已知矿化作用表明,EI的H 2 O量不足,无法解释水热蚀变和矿化的已知量。结合硫,氧和氢同位素数据以及Re-Os同位素源数据,这表明来自更深岩浆和沉积物源的热液额外输入,在VI阶段静脉形成过程中向水热系统中适度添加了陨石水。

著录项

  • 作者

    Gibbins Stacie Lynn;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号