首页> 外文OA文献 >Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel
【2h】

Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel

机译:确定P91电厂钢的统一粘塑性-损伤模型的材料参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Societal pressures are mounting on electricity operators to operate traditional fossil-fuel power plants in an efficient and flexible manner in conjunction with renewable power plants. This requires the uses of high frequency start up – shut down load profiles in order to better match market demands. As such, high temperature/pressure components such as steam pipe sections and headers experience fluctuating mechanical and thermal loads. There is therefore an industrial need for the accurate prediction of fatigue and creep damage in order to estimate remnant component life. In the present work, a continuum damage model has been coupled with a Chaboche unified viscoplastic constitutive model in order to predict stress-strain behaviour of a P91 martensitic steel (a material used for power plant steam pipes) due to cyclic plasticity and damage accumulation. The experimental data used here are from the previous work [1]. Cyclic fully reversed strain controlled experiments (±0.4%, ±0.25% and ±0.2% strain ranges) and cyclic test with a dwell period (±0.5% strain ranges) for a P91 martensitic steel under isothermal conditions (600°C) are utilised. The physically relevant material parameters are determined and optimised using experimental results. Although many material parameter identification procedures can be found in the literature [1-6], there are uncertainties in determining the limits for the parameters used in the optimisation procedure. This could result in unrealistic parameters while optimising using experimental data. The issue is addressed here by using additional dwell test to identify the limits for stress relaxation parameters before using Cottrell’s stress partition method to identify the limits for strain hardening parameters. Accumulated stored energy for damage initiation criterion and damage evolution parameters are also extracted from the experimental results. The estimated failure lifetimes for ±0.4%, ±0.25% and ±0.2% cases are 1600, 4250 and 9500 cycles, respectively, as opposed to 1424, 3522 and 10512 cycles as given by experiments.
机译:社会压力正迫使电力运营商与可再生能源电厂一起以高效,灵活的方式运营传统的化石燃料电厂。这就需要使用高频启动–关闭负载曲线,以更好地满足市场需求。因此,高温/高压组件(例如蒸汽管段和集管)会承受波动的机械和热负荷。因此,工业上需要对疲劳和蠕变损伤进行精确的预测,以估计剩余部件的寿命。在当前的工作中,连续损伤模型已经与Chaboche统一的粘塑性本构模型相结合,以预测由于循环可塑性和损伤积累而引起的P91马氏体钢(用于电厂蒸汽管的材料)的应力应变行为。这里使用的实验数据来自以前的工作[1]。利用P91马氏体钢在等温条件(600°C)下进行的循环完全反向应变控制实验(±0.4%,±0.25%和±0.2%应变范围)和具有保压期(±0.5%应变范围)的循环试验。使用实验结果确定并优化了与物理相关的材料参数。尽管可以在文献[1-6]中找到许多材料参数识别程序,但是在确定优化程序中使用的参数的限制时仍存在不确定性。使用实验数据进行优化时,这可能会导致参数不切实际。在使用Cottrell的应力分配方法确定应变硬化参数的限制之前,通过使用额外的驻留测试来确定应力松弛参数的限制来解决此问题。还从实验结果中提取了损伤初始准则和损伤演化参数的累积存储能量。在±0.4%,±0.25%和±0.2%的情况下,估计的失效寿命分别为1600、4250和9500个循环,而实验给出的分别为1424、3522和10512个循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号