首页> 外文OA文献 >The Influence of Faulting on Hydrocarbon Migration in the Kupe Area, South Taranaki Basin, New Zealand
【2h】

The Influence of Faulting on Hydrocarbon Migration in the Kupe Area, South Taranaki Basin, New Zealand

机译:断层对新西兰塔拉纳基盆地南部库佩地区油气运移的影响

摘要

Faults play an important role in petroleum systems as both barriers and conduits to theflow of hydrocarbons. An understanding of the relationship between fluid and gasmigration and accumulation, and faulting is often required during hydrocarbonexploration and production, and CO2 storage. While methods for predicting across-faultflow are well advanced (e.g. Yielding et al., 1997; Manzocchi et al., 1999), currentgeomechanical and geometrical methods for predicting the locations of up-fault (up-dip)hydrocarbon migration (and leakage) are relatively untested.This thesis investigates the relationships between up-sequence gas migration in the formof gas chimneys and Pliocene to Recent normal faults in the Kupe Area, South TaranakiBasin. It undertakes studies of the Kupe Area’s structural development, examinesspatial relationships between faults and gas chimneys, tests current geomechanical andgeometrical models to predict up-dip gas flow in faults, and investigates the outcropexpression of fault structure below seismic reflection data resolution and gas flux ratesat an onshore site of fault-related gas leakage. Data for this study are provided by highquality2D and 3D seismic reflection lines (tied to stratigraphy in fifteen wells), andoutcrop of Miocene and Oligocene strata in coastal cliff sections, together with methaneconcentration and flux measurements.Structural development in the Kupe Area was complex and provides a near completerecord of deformation since the Late Cretaceous (~85 Ma). Basin strata up to 9 kmthick record four main periods of deformation that reflect changing plate boundaryconfigurations. Fault reactivation was common in the Kupe Area, with the locationsand orientations of pre-existing faults strongly influencing the locations and geometriesof younger faults and folds. Pliocene to Recent normal faults are highly segmented withlow strain, consistent with an immature fault system in which fault lengths wereestablished rapidly and subsequent fault growth was mainly achieved by accumulationof displacement.Plio-Pleistocene to Recent reactivation of Cretaceous rift faults provides conduits forgas migration from below the regional top seal in the Kupe Area into shallow strata andresults in up-dip gas migration within the Plio-Pleistocene to Recent fault zones. Theselate-stage normal faults (younger than 4 Ma) are shown to have a strong spatialrelationship with gas chimneys suggesting that fault zones are capable of producingchannelised pathways for up-dip hydrocarbon migration. Fifteen of seventeen gasiiichimneys within the study area are rooted within fault zones. All of these fifteen faultrelatedgas chimneys occur at geometrical complexities in fault structure (i.e. relayzones, lateral fault tips or fault intersections). Geometrical complexities are associatedwith locally high throw gradients which are inferred to be accompanied by off-faultstrain in the form of fractures and/or bedding rotation.Three geomechanical modelling techniques (Slip Tendency, Dilation Tendency andFracture Stability) for predicting the locations of up-fault hydrocarbon flow (leakage)are tested using the spatial distribution of gas chimneys and Pliocene to Recent normalfaults in the Kupe Area. Slip Tendency, Dilation Tendency and Fracture Stability datafor all of the faults analysed predict comparable likelihoods of gas migration onchimney and non-chimney sections of the fault surfaces and therefore do not provide arobust basis for predicting where on fault surfaces channelised up-dip gas flow willoccur.Field-based observations of faults show that fractures observed in outcrop and belowseismic reflection data resolution are localised around bends, steps and intersections offaults and show evidence of fluid flow post fault activity. In north Taranaki these faultcomplexities are present in a lateral equivalent to the Otaraoa top seal and, if present inthe Kupe Area, are also likely to induce up-sequence gas migration through fracturenetworks.Methane concentrations measured at one site (Bristol Road Quarry) along theInglewood Fault suggest that gas flux rates up faults may not be uniform over time.Based on the measured gas flux rates gas chimneys in the Kupe Area may form inassociation with gas migration in a series of discrete events lasting from days to years,with possible gas flows at the seabed of ~930 ft3 per chimney per day or 0.34 million ft3per year.
机译:断层在石油系统中起着重要的作用,既是碳氢化合物流的屏障和管道。在油气勘探和生产以及二氧化碳的封存过程中,常常需要了解流体与气体运移和聚集之间的关系以及断层。虽然预测跨断层流动的方法已经很完善(例如,Yielding等,1997; Manzocchi等,1999),但目前的地质力学和几何方法可用于预测断层(上倾)碳氢化合物迁移(和渗漏)的位置本论文研究了南塔拉纳基盆地库佩地区天然气烟囱和上新世向上序的天然气运移与最近的正断层之间的关系。它负责研究库珀地区的结构发展,研究断层与烟囱之间的空间关系,测试当前的地质力学和几何模型,以预测断层中的上倾瓦斯流量,并在地震反射数据分辨率和气体通量率以下调查断层结构的露头挤压。陆上断层相关的天然气泄漏现场。该研究的数据来自高质量的2D和3D地震反射线(与15口井相连的地层),沿海悬崖剖面中的中新世和渐新世地层露头以及甲烷浓度和通量测量结果。自白垩纪晚期(〜85 Ma)以来几乎完整的变形记录。高达9 km厚的盆地地层记录了四个主要的变形周期,反映了不断变化的板块边界构造。断层活化在库珀地区很普遍,既存断层的位置和方向强烈影响年轻断层和褶皱的位置和几何形状。上新世至上新世正断层是高度分段的,低应变的,这与不成熟的断层系统相一致,在该系统中,断层长度迅速建立,随后的断层增长主要是通过位移的积累而实现的。库佩地区的区域顶部海豹进入浅层,并导致上新世内上倾气体向最近断层带的运移。这些晚期阶段的正断层(小于4 Ma)与气体烟囱具有很强的空间关系,这表明断层带能够为上倾烃运移提供通道化路径。研究区内十七个瓦斯烟囱中有十五个植根于断层带。所有这15个与断层有关的瓦斯烟囱都发生在断层结构(即中继带,侧向断层尖端或断层相交处)的几何复杂度上。几何上的复杂性与局部高抛坡度有关,后者被认为是伴随断裂和/或层理旋转形式的断层应变。三种地质力学建模技术(滑移趋势,扩张趋势和断裂稳定性)用于预测断层的位置利用库佩地区最近的正断层的天然气烟囱和上新世的空间分布测试了油气流量(泄漏)。所分析的所有断层的滑动趋势,膨胀趋势和断裂稳定性数据可预测断层表面的烟囱和非烟囱部分上气体迁移的可比可能性,因此无法为预测断层表面上何处发生通道向上倾斜的气流提供可靠的依据。基于现场的断层观测表明,在露头和地震反射数据分辨率下观察到的裂缝位于弯曲,台阶和相交断层附近,并显示出断层活动后流体流动的迹象。在塔拉纳基(Taranaki)北部,这些断层复杂性的位置与奥塔拉瓦(Otaraoa)顶部海豹相当,并且如果存在于库佩地区,也可能通过裂缝网络引起向上层序的天然气运移。断层表明向上断层的气体通量率可能会随着时间的推移而不一致。基于测得的气体通量率,库佩地区的烟囱可能与气体迁移相关联,发生了数天至数年的一系列离散事件,可能存在气体流在海底,每个烟囱每天约930平方英尺,或每年34万平方英尺。

著录项

  • 作者

    Hemmings-Sykes Sam;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_NZ
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号