首页> 美国政府科技报告 >Neotectonics of Asia: Thin-Shell Finite-Element Models with Faults
【24h】

Neotectonics of Asia: Thin-Shell Finite-Element Models with Faults

机译:亚洲新构造:带缺陷的薄壳有限元模型

获取原文

摘要

As India pushed into and beneath the south margin of Asia in Cenozoic time, itadded a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the Pacific subduction zones, which is below 6 MPa. Because this flow occurs across a wide range of latitudes, the net eastward escape is greater than the rate of crustal addition in the Himalaya. The crustal budget is balanced by extension and thinning, primarily within the Tibetan plateau and the Baikal rift. The low level of deviation stresses in the best models suggests that topographic stress plays a major role in the orogeny; thus, we have to expect that different topography in the past may have been linked with fundamentally different modes of continental collision.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号