首页> 美国政府科技报告 >Flow Regime Transition in Inner Grooved Minichannel Cold Plates for Cooling Hybrid Electric Power Electronics.
【24h】

Flow Regime Transition in Inner Grooved Minichannel Cold Plates for Cooling Hybrid Electric Power Electronics.

机译:冷却混合电力电子器件内槽微通道冷板的流态变换。

获取原文

摘要

Forced flow of fluids undergoing phase change in traditional single- phase cold plates is an effective way to manage waste heat removal of vehicle power electronics. Such cold plates come in a variety of standard styles, ranging from circular-tubed cold plates and flat-tube cold plates, to more exotic designs such as louvered and offset fin cold plates. The mechanisms of heat transfer in a two-phase system are different than single-phase, and as such, improvement can be made by custom designing cold plates for two-phase operation. Past research has focused on surface modifications that enhance nucleate boiling, convective vaporization, or both during two-phase operation. The method that has gained the most attention is the use of inner grooved tubes for performance improvement in refrigeration applications. Despite the popularity of inner grooved tubes, the flow mechanisms that deliver performance enhancement are not fully understood. The absence of phenomenological insights and physical models makes it difficult to transition inner grooved tube technology from conventional refrigeration equipment to cold plates. Therefore, understanding the physical mechanisms underpinning two-phase performance enhancement in inner grooved tubes is at the heart of this report.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号