首页> 美国政府科技报告 >Modeling Small Unmanned Aerial System Mishaps Using Logistic Regression and Artificial Neural Networks.
【24h】

Modeling Small Unmanned Aerial System Mishaps Using Logistic Regression and Artificial Neural Networks.

机译:利用Logistic回归和人工神经网络建模小型无人机系统事故。

获取原文

摘要

A dataset of 854 small unmanned aerial system (SUAS) flight experiments from 2005-2009 is analyzed to determine significant factors that contribute to mishaps. The data from 29 airframes of different designs and technology readiness levels were aggregated. 20 measured parameters from each flight experiment are investigated, including wind speed, pilot experience, number of prior flights, pilot currency, etc. Outcomes of failures (loss of flight data) and damage (injury to airframe) are classified by logistic regression modeling and artificial neural network analysis. From the analysis, it can be concluded that SUAS damage is a random event that cannot be predicted with greater accuracy than guessing. Failures can be predicted with greater accuracy (38.5% occurrence, model hit rate 69.6%). Five significant factors were identified by both the neural networks and logistic regression. SUAS prototypes risk failures at six times the odds of their commercially manufactured counterparts. Likewise, manually controlled SUAS have twice the odds of experiencing a failure as those autonomously controlled. Wind speeds, pilot experience, and pilot currency were not found to be statistically significant to flight outcomes. The implications of these results for decision makers, range safety officers and test engineers are discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号