...
首页> 外文期刊>Global change biology >Tree demography suggests multiple directions and drivers for species range shifts in mountains of Northeastern United States
【24h】

Tree demography suggests multiple directions and drivers for species range shifts in mountains of Northeastern United States

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Climate change is expected to lead to upslope shifts in tree species distributions, but the evidence is mixed partly due to land-use effects and individualistic species responses to climate. We examined how individual tree species demography varies along elevational climatic gradients across four states in the northeastern United States to determine whether species elevational distributions and their potential upslope (or downslope) shifts were controlled by climate, land-use legacies (past logging), or soils. We characterized tree demography, microclimate, land-use legacies, and soils at 83 sites stratified by elevation (similar to 500 to similar to 1200 m above sea level) across 12 mountains containing the transition from northern hardwood to spruce-fir forests. We modeled elevational distributions of tree species saplings and adults using logistic regression to test whether sapling distributions suggest ongoing species range expansion upslope (or contraction downslope) relative to adults, and we used linear mixed models to determine the extent to which climate, land use, and soil variables explain these distributions. Tree demography varied with elevation by species, suggesting a potential upslope shift only for American beech, downslope shifts for red spruce (more so in cool regions) and sugar maple, and no change with elevation for balsam fir. While soils had relatively minor effects, climate was the dominant predictor for most species and more so for saplings than adults of red spruce, sugar maple, yellow birch, cordate birch, and striped maple. On the other hand, logging legacies were positively associated with American beech, sugar maple, and yellow birch, and negatively with red spruce and balsam fir -generally more so for adults than saplings. All species exhibited individualistic rather than synchronous demographic responses to climate and land use, and the return of red spruce to lower elevations where past logging originally benefited northern hardwood species indicates that land use may mask species range shifts caused by changing climate.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号