...
首页> 外文期刊>Global change biology >Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum
【24h】

Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

One consequence of rising spring temperatures is that the optimum timing of key life-history events may advance. Where this is the case, a population's fate may depend on the degree to which it is able to track a change in the optimum timing either via plasticity or via adaptation. Estimating the effect that temperature change will have on optimum timing using standard approaches is logistically challenging, with the result that very few estimates of this important parameter exist. Here we adopt an alternative statistical method that substitutes space for time to estimate the temperature sensitivity of the optimum timing of 22 plant species based on >200 000 spatiotemporal phenological observations from across the United Kingdom. We find that first leafing and flowering dates are sensitive to forcing (spring) temperatures, with optimum timing advancing by an average of 3 days degrees C-1 and plastic responses to forcing between -3 and -8 days degrees C-1. Chilling (autumn/winter) temperatures and photoperiod tend to be important cues for species with early and late phenology, respectively. For most species, we find that plasticity is adaptive, and for seven species, plasticity is sufficient to track geographic variation in the optimum phenology. For four species, we find that plasticity is significantly steeper than the optimum slope that we estimate between forcing temperature and phenology, and we examine possible explanations for this countergradient pattern, including local adaptation.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号