...
首页> 外文期刊>Nanotechnology >Nanostructured catalysts in fuel cells
【24h】

Nanostructured catalysts in fuel cells

机译:燃料电池中的纳米结构催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most important challenges for the ultimate commercialization of fuel cells is the preparation of active, robust, and low-cost catalysts. This review highlights some findings of our investigations in the last few years in developing advanced approaches to nanostructured catalysts that address this challenge. Emphasis is placed on nanoengineering-based fabrication, processing, and characterization of multimetallic nanoparticles with controllable size (1-10 nm), shape, composition (e.g. M1(n)M2(100-n), M1(n)M2(m)M3(100- n-m), M1@M2, where M (1 or 2) = Pt, Co, Ni, V, Fe, Cu, Pd, W, Ag, Au etc) and morphology (e.g. alloy, core@shell etc). In addition to an overview of the fundamental issues and the recent progress in fuel cell catalysts, results from evaluations of the electrocatalytic performance of nanoengineered catalysts in fuel cell reactions are discussed. This approach differs from other traditional approaches to the preparation of supported catalysts in the ability to control the particle size, composition, phase, and surface properties. An understanding of how the nanoscale properties of the multimetallic nanoparticles differ from their bulk-scale counterparts, and how the interaction between the nanoparticles and the support materials relates to the size sintering or evolution in the thermal activation process, is also discussed. The fact that the bimetallic gold-platinum nanoparticle system displays a single-phase character different from the miscibility gap known for its bulk-scale counterpart serves as an important indication of the nanoscale manipulation of the structural properties, which is useful for refining the design and preparation of the bimetallic catalysts. The insight gained from probing how nanoparticle-nanoparticle and nanoparticle-substrate interactions relate to the size evolution in the activation process of nanoparticles on planar substrates serves as an important guiding principle in the control of nanoparticle sintering on different support materials. The fact that some of the trimetallic nanoparticle catalysts (e.g. PtVFe or PtNiFe) exhibit electrocatalytic activities in fuel cell reactions which are four-five times higher than in pure Pt catalysts constitutes the basis for further exploration of a variety of multimetallic combinations. The fundamental insights into the control of nanoscale alloy, composition, and core-shell structures have important implications in identifying nanostructured fuel cell catalysts with an optimized balance of catalytic activity and stability.
机译:燃料电池最终商业化的最重要挑战之一是制备活性,坚固且低成本的催化剂。这篇综述重点介绍了我们在过去几年中为开发可解决这一挑战的纳米结构催化剂的先进方法而进行的研究的一些发现。重点放在基于纳米工程的多金属纳米颗粒的制造,加工和表征上,该纳米颗粒具有可控制的大小(1-10 nm),形状和成分(例如M1(n)M2(100-n),M1(n)M2(m) M3(100-nm),M1 @ M2,其中M(1或2)= Pt,Co,Ni,V,Fe,Cu,Pd,W,Ag,Au等)和形态(例如合金,核@壳等) )。除了概述基本问题和燃料电池催化剂的最新进展外,还讨论了纳米工程催化剂在燃料电池反应中的电催化性能评估结果。该方法在控制颗粒大小,组成,相和表面性质的能力方面不同于其他传统的制备载体催化剂的方法。还讨论了对多金属纳米粒子的纳米级性质与它们的体积级对应物之间的差异,以及纳米粒子与载体材料之间的相互作用如何与热活化过程中的尺寸烧结或演化有关的理解。双金属金-铂纳米粒子系统显示的单相特征不同于其体相对应物的混溶间隙,这一事实可作为纳米级操纵结构特性的重要指示,这对于改进设计和设计非常有用。双金属催化剂的制备。探究纳米粒子-纳米粒子和纳米粒子-基板之间的相互作用如何与平面基板上的纳米粒子活化过程中的尺寸演变相关联所获得的见解,是控制不同载体材料上纳米粒子烧结的重要指导原则。一些三金属纳米颗粒催化剂(例如PtVFe或PtNiFe)在燃料电池反应中表现出比纯Pt催化剂高四倍的电催化活性这一事实构成了进一步探索多种多金属组合的基础。控制纳米级合金,成分和核-壳结构的基本见解对确定具有最佳催化活性和稳定性平衡的纳米结构燃料电池催化剂具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号